4.8 Article

Optical Shading Induces an In-Plane Potential Gradient in a Semiartificial Photosynthetic System Bringing Photoelectric Synergy

期刊

ADVANCED ENERGY MATERIALS
卷 9, 期 35, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201901449

关键词

asymmetric photoexcitation; bio-photovoltaic; in-plane electric field; semiartificial photosynthetic system

资金

  1. MOE AcRF 1 [R-284-000-161-114]
  2. Biotechnology and Biological Sciences Research Council (BBSRC) [BB/I022570/1]
  3. BrisSynBio Synthetic Biology Research Centre at the University of Bristol - BBSRC [BB/L01386X/1]
  4. Engineering and Physical Sciences Research Council (EPSRC) of the UK
  5. BBSRC [BB/L01386X/1, BB/I022570/1] Funding Source: UKRI

向作者/读者索取更多资源

Semiartificial photosynthetic systems have opened up new avenues for harvesting solar energy using natural photosynthetic materials in combination with synthetic components. This work reports a new, semiartificial system for solar energy conversion that synergistically combines photoreactions in a purple bacterial photosynthetic membrane with those in three types of transition metal-semiconductor Schottky junctions. A transparent film of a common transition metal interfaced with an n-doped silicon semiconductor exhibits an in-plane potential gradient when a light-penetration variance is established on its surface by optical shading of photoabsorbing photosynthetic membranes. The in-plane potential gradients (0.08-0.3 V) enable a directional charge transport between the synthetic and natural photoelectric systems, which is further enhanced in a device setting by a biocompatible thixotropic gel electrolyte that permeates the membrane multilayer, facilitating a strong and steady photoelectric current as high as 1.3 mA cm(-2), the highest achieved so far with any anoxygenic photosynthetic system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据