4.6 Article

Measurement of Three-Dimensional Structural Displacement Using a Hybrid Inertial Vision-Based System

期刊

SENSORS
卷 19, 期 19, 页码 -

出版社

MDPI
DOI: 10.3390/s19194083

关键词

three-dimensional; static structural displacement measurement; structural health monitoring; out-of-plane; vision-based; camera calibration; camera movement compensation; motion sensor

向作者/读者索取更多资源

Accurate three-dimensional displacement measurements of bridges and other structures have received significant attention in recent years. The main challenges of such measurements include the cost and the need for a scalable array of instrumentation. This paper presents a novel Hybrid Inertial Vision-Based Displacement Measurement (HIVBDM) system that can measure three-dimensional structural displacements by using a monocular charge-coupled device (CCD) camera, a stationary calibration target, and an attached tilt sensor. The HIVBDM system does not require the camera to be stationary during the measurements, while the camera movements, i.e., rotations and translations, during the measurement process are compensated by using a stationary calibration target in the field of view (FOV) of the camera. An attached tilt sensor is further used to refine the camera movement compensation, and better infers the global three-dimensional structural displacements. This HIVBDM system is evaluated on both short-term and long-term synthetic static structural displacements, which are conducted in an indoor simulated experimental environment. In the experiments, at a 9.75 m operating distance between the monitoring camera and the structure that is being monitored, the proposed HIVBDM system achieves an average of 1.440 mm Root Mean Square Error (RMSE) on the in-plane structural translations and an average of 2.904 mm RMSE on the out-of-plane structural translations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据