4.7 Article

Characterization and source-tracking of antibiotic resistomes in the sediments of a peri-urban river

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 679, 期 -, 页码 88-96

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.05.063

关键词

Antibiotic resistance gene; Bacterial community; High-throughput sequencing; CrAssphage; Microbial source tracking; Chaobai River

资金

  1. Beijing Municipal Natural Science Foundation [8172030]
  2. Major Science and Technology Program for Water Pollution Control and Treatment of China [2017ZX07302]
  3. National Key Research and Development Program of China [2018YFC0406502]
  4. 111 Project of China [B18006]

向作者/读者索取更多资源

The peri-urban rivers are one of the critical interfaces between urban-rural symbiotic ecosystems and appear to be a reservoir of antibiotic resistance genes (ARGs) in the environment. To prevent the transmission risks of ARGs between peri-urban river and human, it is essential to explore the prevalence and source of ARGs in the environment for designing potential mitigation strategies. In this study, we focused on the characterization and sourcetracking of ARGs in the sediments of a typical peri-urban river in Beijing, Chaobai River. Twenty-seven ARGs frequently reported in the environment, and two integrons (intI1 and intI2) were detected using high-throughput quantitative PCR. The profile of bacterial community was determined by performing 165 rRNA gene sequencing. Meanwhile, crAssphage, a novel recently-discovered DNA bacteriophage, was employed for tracking the contribution of human fecal pollution to the prevalence of ARGs. Results showed that the targeted ARGs were detected widely in the sediments of Chaobai River. Relatively, the abundances of ARGs in downstream were higher than those in the upstream, likely suggesting a gradient impact of anthropogenic activities along the river. Remarkably, the intl gene was correlated significantly with most of the ARGs and might be the key factor influencing the shaping of ARGs in the river sediments. However, no significant correlations were observed between the ARGs and selective pressure factors, including antibiotics and metals. Of the identified 1039 genera, Escherichia-Shigella. Bacteroides, Arcobacter, Dechloromonas and Pseudomonas were the top most abundant organisms. Microbial source tracking based on the crAssphage annotation suggested that human sewage might be one of the potential sources of resistance bacteria in the river sediments. The study can advance our knowledge about ARGs in the peri-urban river and provides a management reference for ARG pollution control. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据