4.8 Article

Optical deformation of single aerosol particles

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1907687116

关键词

optical trapping; surface tension; whispering gallery modes; aerosol

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Advancements in designing complex models for atmospheric aerosol science and aerosol-cloud interactions rely vitally on accurately measuring the physicochemical properties of microscopic particles. Optical tweezers are a laboratory-based platform that can provide access to such measurements as they are able to isolate individual particles from an ensemble. The surprising ability of a focused beam of light to trap and hold a single particle can be conceptually understood in the ray optics regime using momentum transfer and Newton's second law. The same radiation pressure that results in stable trapping will also exert a deforming optical stress on the surface of the particle. For micron-sized aqueous droplets held in the air, the deformation will be on the order of a few nanometers or less, clearly not observable through optical microscopy. In this study, we utilize cavity-enhanced Raman scattering and a phenomenon known as thermal locking to measure small deformations in optically trapped droplets. With the aid of light-scattering calculations and a model that balances the hydrostatic pressure, surface tension, and optical pressure across the air-droplet interface, we can accurately determine surface tension from our measurements. Our approach is applied to 2 systems of atmospheric interest: aqueous organic and inorganic aerosol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据