4.8 Article

Localization as an Entanglement Phase Transition in Boundary-Driven Anderson Models

期刊

PHYSICAL REVIEW LETTERS
卷 123, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.123.110601

关键词

-

资金

  1. DARPA DRINQS program
  2. DARPA [D18AC0025]
  3. Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4535]

向作者/读者索取更多资源

The Anderson localization transition is one of the most well studied examples of a zero temperature quantum phase transition. On the other hand, many open questions remain about the phenomenology of disordered systems driven far out of equilibrium. Here we study the localization transition in the prototypical three-dimensional, noninteracting Anderson model when the system is driven at its boundaries to induce a current carrying nonequilibrium steady state. Recently we showed that the diffusive phase of this model exhibits extensive mutual information of its nonequilibrium steady-state density matrix. We show that this extensive scaling persists in the entanglement and at the localization critical point, before crossing over to a short-range (area-law) scaling in the localized phase. We introduce an entanglement witness for fermionic states that we name the mutual coherence, which, for fermionic Gaussian states, is also a lower bound on the mutual information. Through a combination of analytical arguments and numerics, we determine the finite-size scaling of the mutual coherence across the transition. These results further develop the notion of entanglement phase transitions in open systems, with direct implications for driven many-body localized systems, as well as experimental studies of driven-disordered systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据