4.5 Article

Model Study of Blast Furnace Operation with Central Coke Charging

出版社

SPRINGER
DOI: 10.1007/s11663-019-01657-2

关键词

-

资金

  1. Australian Research Council [LP150100112, LP160101100]
  2. Baosteel and Clean Energy Australia
  3. China Scholarship Council
  4. Australian Research Council [LP160101100] Funding Source: Australian Research Council

向作者/读者索取更多资源

Blast furnace (BF) remains the dominant ironmaking process worldwide. Central coke charging (CCC) operation is a promising technology for stabilizing BF operations, but it needs reliable and quantified process design and control. In this work, a multi-fluid BF model is further developed for quantitatively investigating flow-thermal-chemical phenomena of a BF under CCC operation. This model features the respective chemical reactions in the respective coke and ore layers, and a specific sub-model of layer profile for the burden structure for the CCC operation. The simulation results confirm that the gas flow patterns and cohesive zone's shape and location under the CCC operation are quite different from the non-CCC operation. Under the CCC operation, the heat is overloaded at the furnace center while the reduction load is much heavier at the periphery regions; the profiles of top gas temperature and gas utilization show bell-shape and inverse-bell-shape patterns, respectively. More importantly, these differences are characterized quantitatively. In this given case, when the CCC opening radius at the throat is 0.35 m, the cohesive zone top opening radius is around 0.50 m, and the isotherms of CCC operation become much steeper (80 deg) than those of non-CCC operation (60 deg) near BF central regions. In addition, it is confirmed that carbon solution-loss reaction rate can be decreased significantly at BF central regions under CCC operation. The model helps to understand CCC operation and provides a cost-effective method for optimizing BF practice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据