4.7 Article

Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.138268

关键词

Additive manufacturing (AM); Manufacturing defects; Fatigue; Austenitic stainless steel

资金

  1. UC Davis Campus Executive Fellowship from Sandia National Laboratories
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]

向作者/读者索取更多资源

Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often > 1 mm in length) significantly reduce ultimate tensile strength and ductility, as well as accelerate fatigue crack initiation and reduce fatigue life. In comparison, small spherical defects (< 100 mu m in diameter) have less effect on tensile and fatigue properties. Fatigue crack growth rate is less severely affected by defects than other properties, showing only local acceleration in the proximity of LoF defects. Therefore, shorter fatigue life is attributed to the role of LoF defects on facilitating fatigue crack initiation and to a lesser extent fatigue crack propagation. Additionally, the fatigue life can be normalized for defects by considering their effect on ultimate tensile strength, suggesting that in the limit of low defect population, the fatigue strength of additively manufactured stainless steel is similar to conventional wrought materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据