4.7 Article

Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.138210

关键词

Damage mechanism; Ductility; Selective laser melting; Heat treatment; Friction stir processing

资金

  1. WALInnov LongLifeAM project - Service public de Wallonie Economic Emploi Recherche (SPW-EER) [1810016]
  2. European Research Council (ERC) [716678]
  3. Fonds de la recherche scientifique-FNRS
  4. Belgian National Fund for Scientific Research (FSRFNRS)
  5. UCLouvain

向作者/读者索取更多资源

Selective laser melting (SLM) manufactured AlSi10Mg alloys present a fine silicon-rich network and precipitates which grant high mechanical strength but low ductility. Post-treatments, aiming at eliminating inherent defects related to SLM such as residual stresses, porosity or inhomogeneity, result in significant changes in the microstructure and impact both the hardening and the damage mechanisms of the post-treated material. The present work is dedicated to the investigation of the fracture of SLM AlSi10Mg under as built and three post-treatment conditions, namely two stress relieve heat treatments and friction stir processing (FSP). It is found that the interconnected Si network fosters damage at low strain due to the brittleness of the Si phase. The onset of damage transfers load to the enclosed Al phase which then fractures quickly under high stress, thus leading to low material ductility. In contrast, when the Si network is globularized into Si particles, the ductility is highly increased even in the case where the porosity and inhomogeneity of the microstructure remain after the post-treatment. The ductility enhancement results from the delay in void nucleation on the Si particles as well as from the tolerance for void growth in the Al matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据