4.5 Article

Physical properties of Ruddlesden-Popper (n=3) nickelate: La4Ni3O10

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmmm.2019.165915

关键词

Ruddlesden-Popper; Nickelates; Quasi-2D; Pauli paramagnetic; Charge density waves

资金

  1. Research Council of Norway [221905, 263241]
  2. Faculty of Mathematics and Natural Sciences, University of Oslo via the Strategic Research Initiative program

向作者/读者索取更多资源

Nickelates, just like their isoelectronic cousins (the cuprate superconductors), are candidates for high temperature superconductivity. As charge density waves (CDW) and superconductivity might share a similar microscopic origin and that CDW behaviour is earlier suggested for La4Ni3O10, we here provide a detailed physical characterization of the magnetic, electronic and thermodynamic properties of stoichiometric polycrystalline La4Ni3O10 at and below 300 K. By variable temperature, synchrotron powder X-ray diffraction, we observe noticeable expansion in the b-axis and a contraction in c-axis coinciding with the electronic transition. Magnetic measurements indicate Pauli paramagnetic behaviour for the entire temperature range of 4-300 K. Transport data suggest electron-phonon interaction based conduction from 150 to 300 K, at 138 K the we observe an anomaly of second order nature, previously reported as a CDW anomaly. Below this anomaly, we observe no indications of electron-phonon interaction, but rather, Fermi liquid (FL) based T-2 dependence with resistivity minima at 20 K, below which T-1/2 dependence occurs for the resistivity indicating pure electron-electron interactions (EEI) based transport. Specific heat data indicates that mass enhancement of La4Ni3O10 similar to that of the normal state of the cuprates and the entropy change at anomaly suggests close similarities to other quasi-two dimensional systems, such as molybdenum bronzes and manganites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据