4.4 Article

Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 41, 期 5, 页码 439-448

出版社

WILEY
DOI: 10.1002/jcc.26067

关键词

CHARMM; molecular dynamics; noncovalent interactions; polarizable force field; quantum mechanics

资金

  1. National Institutes of Health [GM131710]
  2. Samuel Waxman Cancer Foundation

向作者/读者索取更多资源

Cation-pi interactions are noncovalent interactions between a pi-electron system and a positively charged ion that are regarded as a strong noncovalent interaction and are ubiquitous in biological systems. Similarly, though less studied, anion-ring interactions are present in proteins along with in-plane interactions of anions with aromatic rings. As these interactions are between a polarizing ion and a polarizable pi system, the accuracy of the treatment of these interactions in molecular dynamics (MD) simulations using additive force fields (FFs) may be limited. In the present work, to allow for a better description of ion-pi interactions in proteins in the Drude-2013 protein polarizable FF, we systematically optimized the parameters for these interactions targeting model compound quantum mechanical (QM) interaction energies with atom pair-specific Lennard-Jones parameters along with virtual particles as selected ring centroids introduced to target the QM interaction energies and geometries. Subsequently, MD simulations were performed on a series of protein structures where ion-pi pairs occur to evaluate the optimized parameters in the context of the Drude-2013 FF. The resulting FF leads to a significant improvement in reproducing the ion-pi pair distances observed in experimental protein structures, as well as a smaller root-mean-square differences and fluctuations of the overall protein structures from experimental structures. Accordingly, the optimized Drude-2013 protein polarizable FF is suggested for use in MD simulations of proteins where cation-pi and anion-ring interactions are critical. (c) 2019 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Multidisciplinary Sciences

Discovery of beta-lactamase CMY-10 inhibitors for combination therapy against multi-drug resistant Enterobacteriaceae

Nousheen Parvaiz, Faisal Ahmad, Wenbo Yu, Alexander D. MacKerell, Syed Sikander Azam

Summary: This study explores the use of combination therapy to identify novel beta-lactamase inhibitors that can inactivate the enzyme of pathogens, providing a new approach in combating multi-drug resistant pathogens. By utilizing computational screening and experimental validation, potential compounds were identified with beta-lactamase inhibition and antibacterial activity against MDR clinical isolates. These non-beta-lactam-based inhibitors have the potential to be used in combination therapy with beta-lactam antibiotics against resistant strains.

PLOS ONE (2021)

Article Chemistry, Physical

Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field

Anmol Kumar, Poonam Pandey, Payal Chatterjee, Alexander D. Jr Jr MacKerell

Summary: The Drude polarizable force field captures electronic polarization effects and is useful for simulating biomolecules and other molecules. Deep neural network models can accurately predict molecular dipole moments and polarizabilities.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2022)

Article Chemistry, Multidisciplinary

CHARMM-GUI Drude prepper for molecular dynamics simulation using the classical Drude polarizable force field

Abhishek A. Kognole, Jumin Lee, Sang-Jun Park, Sunhwan Jo, Payal Chatterjee, Justin A. Lemkul, Jing Huang, Alexander D. MacKerell, Wonpil Im

Summary: The Drude Prepper tool has been developed in CHARMM-GUI to facilitate the use of polarizable FF based on the classic Drude oscillator model. It allows for easy construction of Drude FF-based PSF and generation of input for MD simulations using various simulation packages. The stability and effectiveness of the Drude Prepper protocol and inputs have been demonstrated through validation with a variety of heterogeneous systems.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2022)

Article Chemistry, Physical

Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes

Adam T. Green, Amanda J. Pickard, Rongzhong Li, Alexander D. MacKerell, Ulrich Bierbach, Samuel S. Cho

Summary: This study uses circular dichroism spectroscopy to show the parallel topologies of two putative ribosomal G-quadruplex sequences, and validates and refines the modeled structures using molecular dynamics simulations. The results provide a structural foundation for understanding G-quadruplex functions and designing novel chemotherapeutics.

JOURNAL OF PHYSICAL CHEMISTRY B (2022)

Review Chemistry, Multidisciplinary

Application of site-identification by ligand competitive saturation in computer-aided drug design

Himanshu Goel, Anthony Hazel, Wenbo Yu, Sunhwan Jo, Alexander D. MacKerell

Summary: SILCS utilizes molecular simulation to obtain functional group affinity patterns for drug discovery, allowing for identification of novel ligand binding pockets, prediction of protein-ligand binding affinities, and other applications in computer-aided drug design. It represents a comprehensive approach to improve drug development processes through accuracy and throughput enhancements.

NEW JOURNAL OF CHEMISTRY (2022)

Article Chemistry, Physical

Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field

Payal Chatterjee, Mert Y. Sengul, Anmol Kumar, Alexander D. MacKerell

Summary: The outcomes of computational chemistry and biology research are greatly influenced by the choice of forcefield used in molecular simulations. This study develops a deep learning-based framework for optimizing van der Waals interactions in molecular simulations. The resulting LJ parameters (interactions between atoms) are validated for their performance in reproducing condensed phase thermodynamic properties and demonstrate improved accuracy in reproducing solvent and crystal properties.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2022)

Article Chemistry, Medicinal

Preserving the Integrity of Empirical Force Fields

Asuka A. Orr, Suliman Sharif, Junmei Wang, Alexander D. MacKerell

Summary: Generalized force fields (FFs) are extensions of biomolecular FFs used for organic molecules. However, their application to arbitrary molecules requires caution to ensure their integrity.

JOURNAL OF CHEMICAL INFORMATION AND MODELING (2022)

Article Chemistry, Physical

SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules

Abhishek A. Kognole, Anthony Hazel, Alexander D. MacKerell

Summary: RNA molecules can be potential drug targets in various diseases due to their dysregulated expression or misfolding. Noncoding RNAs, which account for a large part of the human genome, have complex structures and can be targeted by small molecules. The SILCS computational approach, termed SILCS-RNA, was extended to target RNA in this study and evaluated against seven RNA targets. The method provides detailed functional group affinity patterns and facilitates the identification of new potential binding sites and ligand design.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2022)

Article Chemistry, Physical

Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation

Wenbo Yu, David J. Weber, Alexander D. MacKerell

Summary: Covalent drug design plays a significant role in drug discovery by forming a covalent bond with targeted residues, leading to a more effective therapeutic approach. Computational methods can identify reactive residues, test potential reactivities, and predict noncovalent contributions to binding. SILCS, a functional group mapping approach, considers protein flexibility, functional group, and protein desolvation along with functional group-protein interactions. SILCS-Covalent, an integrated workflow, can qualitatively and quantitatively inform covalent drug discovery.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Physical

Drude Polarizable Lipid Force Field with Explicit Treatment of Long- Range Dispersion: Parametrization and Validation for Saturated and Monounsaturated Zwitterionic Lipids

Yalun Yu, Richard M. Venable, Jonathan Thirman, Payal Chatterjee, Anmol Kumar, Richard W. Pastor, Benoit Roux, Alexander D. MacKerell Jr, Jeffery B. Klauda

Summary: Accurate empirical force fields of lipid molecules are crucial for molecular dynamics simulations of various lipid systems and heterogeneous systems. The polarizable Drude force field has been optimized in this study to improve its accuracy in simulating pure bilayers and membranes. By using both experimental and quantum mechanical data, the optimized force field shows good agreement with a range of experimental observables. The polarizable Drude2023 force field is anticipated to advance our understanding of electronic polarization in lipid systems.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2023)

Article Chemistry, Multidisciplinary

GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations

Mingtian Zhao, Abhishek A. Kognole, Sunhwan Jo, Aoxiang Tao, Anthony Hazel, Alexander D. MacKerell Jr

Summary: In this study, the sampling efficiency of the GCMC method was improved by applying known cavity-bias and configurational-bias algorithms on GPU architecture. The method was parallelized using CUDA and OpenCL, resulting in simultaneous sampling of a large number of configurations during insertion attempts. The partitioning scheme allowed for simultaneous insertion attempts for large systems, significantly improving efficiency. The algorithm was shown to be useful in the application of the site-identification by ligand competitive saturation (SILCS) co-solvent sampling approach for the protein CDK2.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2023)

Article Medicine, Research & Experimental

Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction

Asuka A. Orr, Aoxiang Tao, Olgun Guvench, Alexander D. MacKerell

Summary: Protein-based therapeutics often face challenges of protein aggregation and high solution viscosity due to high concentrations of active protein. The charge of a protein, affected by its environment, plays a significant role in these solution behaviors. This study presents a structure-based approach called SILCS-Biologics, which predicts the effective charge of proteins by considering the competition between ions and the presence of buffers.

MOLECULAR PHARMACEUTICS (2023)

Article Chemistry, Multidisciplinary

Influence of Mg2+ Distribution on the Stability of Folded States of the Twister Ribozyme Revealed Using Grand Canonical Monte Carlo and Generative Deep Learning Enhanced Sampling

Mert Y. Sengul, Alexander D. MacKerell

Summary: Metal ions, particularly Mg2+, play a role in stabilizing RNA's tertiary structures. However, the atomic-level mechanisms underlying this process are not fully understood. In this study, computational techniques were combined to investigate the specific interactions between Mg2+ ions and RNA, particularly in the pseudoknot structure of the Twister ribozyme.

ACS OMEGA (2023)

Article Chemistry, Multidisciplinary

hERG Blockade Prediction by Combining Site Identification by Ligand Competitive Saturation and Physicochemical Properties

Himanshu Goel, Wenbo Yu, Alexander D. MacKerell

Summary: This article presents the application of structure- and ligand-based approaches in simulating and predicting hERG drug liability. By combining the SILCS method with physicochemical properties, predictive models for hERG blockade were developed, resulting in improved predictability and aiding in rational drug design to minimize hERG risk.

CHEMISTRY-SWITZERLAND (2022)

Article Chemistry, Multidisciplinary

Accurate Modeling of RNA Hairpins Through the Explicit Treatment of Electronic Polarizability with the Classical Drude Oscillator Force Field

Mert Y. Sengul, Alexander D. MacKerell

Summary: The presence of polarizability in the force field improves the stability of RNA hairpin structures and leads to variations in dipole moments and ion distribution. Molecular dynamics simulations play a crucial role in modeling biomolecular systems, and the treatment of electrostatic interactions in the force field strongly affects simulation accuracy. In this study, the impact of polarization on structural properties, dipole moment distributions, and cation interactions in RNA hairpin systems is investigated using polarizable and non-polarizable nucleic acid force fields.

JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY (2022)

Article Chemistry, Multidisciplinary

Toward accurate modeling of structure and energetics of bulk hexagonal boron nitride

Michal Novotny, Matus Dubecky, Frantisek Karlicky

Summary: This paper investigates the accuracy of different DFT-based computational approaches in calculating the equilibrium lattice constants and exfoliation energy of hexagonal boron nitride (h-BN). The results are compared with experiments and reference QMC calculations to evaluate the accuracy of these computational methods.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Tuning ultrafast time-evolution of photo-induced charge-transfer states: A real-time electronic dynamics study in substituted indenotetracene derivatives

Luigi Crisci, Federico Coppola, Alessio Petrone, Nadia Rega

Summary: The charge transfer dynamics in asymmetrically substituted indenotetracene molecules upon photo-excitation were investigated using real-time time-dependent density functional theory simulations. The study found that the electron-donating character of the substituents affects the overall electronic energy spacing and ultrafast charge transfer dynamics.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

The stability of oxygen-centered radicals and its response to hydrogen bonding interactions

Vasilii Korotenko, Hendrik Zipse

Summary: The stability of various radicals and molecules has been studied using different theoretical methods, and good correlations between theoretical calculations and experimental results have been found. The effects of hydrogen bonding interactions on the stability of oxygen-centered radicals have also been investigated.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Accurate ab initio potential energy surface, rovibrational energy levels and resonance interactions of triplet ((X)over-tilde3B1) methylene

Oleg Egorov, Michael Rey, Dominika Viglaska, Andrei V. Nikitin

Summary: In this work, the rovibrational energy levels of four isotopologues of methylene were calculated using a new accurate ab initio potential energy surface. The accuracy of the calculations was improved by considering scalar relativistic effects, DBOC, and high-order electronic correlations. For the first time, all available experimental rovibrational transitions were reproduced with high accuracy, without any empirical corrections.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2024)