4.7 Article

Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 26, 期 30, 页码 31099-31110

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-06175-x

关键词

Poly(m-phenylenediamine); Reduction graphene oxide; Composites; Hexavalent chromium; Reduction; Removal

资金

  1. National Key R&D Program of China [2016YFC0403003]
  2. key project of National Natural Science Foundation of China [51634010]
  3. Key R&D Program of Hunan Province [2018SK2026]

向作者/读者索取更多资源

To improve the mass transfer efficiency of poly(m-phenylenediamine) for the effective removal of hexavalent chromium (Cr (VI)) from aqueous solution, a facile and one-step method to prepare two-dimensional poly(m-phenylenediamine) functionalized reduction graphene oxide (rGO-PmPD) by dilution polymerization is developed. The structure and morphology of rGO-PmPD as well as rGO and PmPD were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), Fourier-transformed infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD). The preparation mechanism, adsorption performance, and mechanism of rGO-PmPD were then investigated in detail. The obtained rGO-PmPD exhibited thin 2D nanosheet morphology with much improved specific surface area and pore volume (18 and 25 times higher than that of PmPD, respectively). The Cr (VI) adsorption of rGO-PmPD was fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model, and the maximum adsorption capacity of rGO-PmPD reached 588.26 mg g(-1), higher than that of PmPD (400 mg g(-1)) and rGO (156.25 mg g(-1)). Moreover, the regeneration efficiency of the rGO-PmPD nanosheet is also promising that the adsorption performance after five times of adsorption-desorption cycles still maintains more than 530 mg g(-1). The removal mechanism involved reduction coupled with adsorption and electrostatic interaction between rGO-PmPD and Cr (VI), and similar to 65% of Cr (VI) removal was attributed to reduction and similar to 35% was ascribed to adsorption and electrostatic interaction. This study thus provides a simple and effective route to achieve high accessible surface area of adsorbent materials with enhanced mass transfer efficiency and thereafter improved adsorption performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据