4.7 Article

Evaluations of Concepts for the Integration of Fuel Cells in Liquid Organic Hydrogen Carrier Systems

期刊

ENERGY & FUELS
卷 33, 期 10, 页码 10324-10330

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.9b01939

关键词

-

资金

  1. Bavarian Ministry of Economic Affairs, Regional Development and Energy through the project Emissionsfreier and stark emissionsreduzierter Bahnverkehr auf nicht-elektrifizierten Strecken

向作者/读者索取更多资源

Liquid organic hydrogen carrier (LOHC) systems store hydrogen through covalent bonds. As the release of H-2 from the LOHC carrier is an endothermic process, clever heat and system integration of this critical step with the exothermic fuel cell operation is highly desirable. The aim of this study is the evaluation of different configurations of this sequence. The results allow decisions on efficient process options. With respect to energy efficiency, the worst case is electric heating for providing the LOHC dehydrogenation heat. Most favorable, in contrast, is full heat integration between a high-temperature fuel cell and the dehydrogenation unit. Partial combustion of hydrogen for heat provision represents an attractive choice. Alternatively, hydrogen transfer to a CO2-free, organic fuel cell is another interesting option. This includes transfer hydrogenation, for example, conversion of acetone to isopropanol, followed by direct conversion of the latter in a fuel cell. While hydrogen combustion-driven dehydrogenation promises high overall power densities, the hydrogen transfer to an organic fuel represents a very efficient technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据