4.7 Article

Investigation of salt penetration mechanism in hydrolyzed polyacrylonitrile asymmetric membranes for pervaporation desalination

期刊

DESALINATION
卷 463, 期 -, 页码 32-39

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2019.04.012

关键词

Asymmetric PAN membrane; Pervaporation; Desalination; Free volume; Positron annihilation lifetime

资金

  1. Ministry of Science and Technology of Taiwan [MOST 105-2221-E-011-168-MY3, 106-2632-E-033-001]

向作者/读者索取更多资源

The present work is designed to evaluate the feasibility of using polyacrylonitrile (PAN) asymmetric membrane prepared via diffusion induced phase separation (DIPS). The PAN membrane was hydrolyzed using NaOH for different hours to improve its hydrophilicity and tune the microstructure morphology of HPAN(1-5h) membrane. The PAN and HPAN(1-5h) membranes were investigated the physicochemical properties by using the ATR-FTIR, water contact angle, Zeta potential and SEM. Besides, the positron annihilation lifetime spectroscopy results reveal that there was a reduction of free volume by increasing hydrolysis time. The breaking of intermolecular hydrogen bonds after desalination prompts a free structure which affects the growth and decline of the dry and wet zones in the membrane. The HPAN(1-5h) membranes were revealed the hydrolysis time progresses, the surface of the membrane became denser and pore size decreased. It also showed the salt deposition on the surface of the membranes after pervaporation testing. A permeation flux of 48.0 L/m(2) h and rejections above 99% was obtained from 3.5 wt% NaCl aqueous feed solution at 60 degrees C using the HPAN membrane which was hydrolyzed for 1 h (HPAN(1h)). The HPAN(1h) membrane gave the highest permeation flux and has stability for up to 80 h of operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据