4.7 Article

GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data

期刊

COMPUTERS & GEOSCIENCES
卷 129, 期 -, 页码 12-25

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2019.04.010

关键词

InSAR; Sentinel-1; TOPS; GPU; CUDA

资金

  1. National Natural Science Foundation of China [41571435, 41774006, 61331016]

向作者/读者索取更多资源

Sentinel-1 (S-1) TOPS data are widely applied in InSAR applications to monitor earthquakes and landslides. The large S-1 coverage however, leads to a high computational cost when executing InSAR techniques. Thus, we develop a GPU accelerated S-1 InSAR processing method implemented on a personal desktop. In the proposed method, computationally expensive modules including geometric coregistration, resampling, Enhanced Spectral Diversity, and coherence estimation, are implemented using CUDA. In addition, several optimizations are employed to enhance the efficiency of these modules. We select an efficient approximation method in the geometric coregistration module, and improve the GPU memory access efficiency in the resampling module through the GPU texture memory, temporary register array, and a configuration with more Ll cache. We develop a novel GPU-based parallel coherence estimation algorithm in ESD and coherence estimation modules, and use the asynchronous data transfer technology to hide the costs of CPU-GPU data transfer for resampling, ESD, and coherence estimation modules. After several optimizations, our GPU-accelerated modules (considering CPU-GPU transmission costs) achieves speedup ratios up to 157x, 166x, 145x, and 168x with respect to their single-threaded CPU counterparts. For a full frame S-1 image, our method reduces the computation time from 1415.32s to 8.59s. Moreover, our method is also validated in two case studies of the 2016 Mw6.2 Central Italy earthquake and 2018 Mw6.9 Leilani Estates earthquake caused by the Kilauea eruption in Hawaii.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据