4.7 Article

Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 181, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2019.107692

关键词

4D printing; Carbon nanotube; Angle-ply laminated preform; Rectangular braided preform; Shape memory property

资金

  1. China Scholarship Council

向作者/读者索取更多资源

Four-dimensional (4D) printing technology, combining 3D printing with stimuli-responsive materials, has attracted extensive attention for smart additive manufacturing. This work focuses on microstructural design, shape recovery behavior and recovery force characterization of 4D printed angle-ply laminated and rectangular braided preforms and their silicone elastomer matrix composites. The angle-ply laminated and rectangular braided preforms were printed using polylactic acid (PLA) and carbon nanotube reinforced PLA (CNT/PLA) based shape memory polymer (SMP) filaments. The X-ray micro-computed tomography, a high resolution and nondestructive imaging technique, was employed to characterize the microstructures of 4D printed specimens and their post-bending damage morphology. The effects of microstructure, CNT filler and silicone elastomer matrix on shape recovery behavior, recovery force and flexural property were studied. The infilling of CNT enabled earlier initiation of specimen shape recovery process, improved the recovery force up to 144% and enhanced the flexural load and modulus. The infusion of silicone matrix increased the final shape recovery ratio to 97.3%, improved the recovery force and enhanced flexural property. The knowledge gained in this research will benefit future design optimization for smarter, faster and stronger actuators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据