4.4 Article

Effective quantum extended spacetime of polymer Schwarzschild black hole

期刊

CLASSICAL AND QUANTUM GRAVITY
卷 36, 期 19, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6382/ab3f16

关键词

loop quantum gravity; black holes; polymerisation; singularity resolution

资金

  1. International Junior Research Group grant of the Elite Network of Bavaria

向作者/读者索取更多资源

The physical interpretation and eventual fate of gravitational singularities in a theory surpassing classical general relativity are puzzling questions that have generated a great deal of interest among various quantum gravity approaches. In the context of loop quantum gravity (LQG), one of the major candidates for a non-perturbative background-independent quantisation of general relativity, considerable effort has been devoted to construct effective models in which these questions can be studied. In these models, classical singularities are replaced by a 'bounce' induced by quantum geometry corrections. Undesirable features may arise however depending on the details of the model. In this paper, we focus on Schwarzschild black holes and propose a new effective quantum theory based on polymerisation of new canonical phase space variables inspired by those successful in loop quantum cosmology. The quantum corrected spacetime resulting from the solutions of the effective dynamics is characterised by infinitely many pairs of trapped and anti-trapped regions connected via a space-like transition surface replacing the central singularity. Quantum effects become relevant at a unique mass independent curvature scale, while they become negligible in the low curvature region near the horizon. The effective quantum metric describes also the exterior regions and asymptotically classical Schwarzschild geometry is recovered. We however find that physically acceptable solutions require us to select a certain subset of initial conditions, corresponding to a specific mass (de-)amplification after the bounce. We also sketch the corresponding quantum theory and explicitly compute the kernel of the Hamiltonian constraint operator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据