4.6 Article

Extending Surface-Enhanced Raman Spectroscopy to Liquids using Shell-Isolated Plasmonic Superstructures

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 25, 期 69, 页码 15772-15778

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201903204

关键词

heterogeneous catalysis; plasmonic nanoparticles; Raman spectroscopy; reaction monitoring; SERS

资金

  1. Technology Area (TA) grant from the Netherlands Organization of Scientific Research (NWO)
  2. Albemarle Catalysts
  3. BASF
  4. TNO

向作者/读者索取更多资源

Plasmonic superstructures (PS) based on Au/SiO2 were prepared for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) in liquid phase applications. These superstructures are composed of functionalized SiO2 spheres with plasmonic Au nanoparticles (NPs) on their surface. Functionalization was performed with (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane and poly(ethylene-imine) (PEI). Of these three, PEI-functionalized spheres showed the highest adsorption density of Au NPs in TEM, UV/Vis and dynamic light scattering (DLS) experiments. Upon decreasing the Au NP/SiO2 sphere size ratio, an increase in adsorption density was also observed. To optimize plasmonic activity, 61 nm Au NPs were adsorbed onto 900 nm SiO2-PEI spheres and these PS were coated with an ultrathin layer (1-2 nm) of SiO2 to obtain Shell-Isolated Plasmonic Superstructures (SHIPS), preventing direct contact between Au NPs and the liquid medium. Zeta potential measurements, TEM and SHINERS showed that SiO2 coating was successful. The detection limit for SHINERS using SHIPS and a 638 nm laser was around 10(-12) m of Rhodamine (10(-15) m for uncoated PS), all with acquisition settings suitable for catalysis applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据