4.5 Article

MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbagrm.2019.07.001

关键词

CDR1 as; Myogenesis; Myogenic differentiation protein 1; Insulin like growth factor 1 receptor; microRNA 7; Skeletal muscle satellite cell

资金

  1. National Natural Science Foundation of China [31772578, 31672402]

向作者/读者索取更多资源

Many protein coding and non-coding genes interplay in governing skeletal muscle formation. Nevertheless, comparing with the linear transcripts, functions of covalently closed circular RNAs (circRNAs), the new frontier of regulatory non-coding RNA (ncRNAs) molecules, remain largely unknown. Here, we identify CDR1as (antisense to the cerebellar degeneration-related protein 1 transcript, also termed as ciRS-7), a well-known cancer and neuron circRNA, plays a significant role in virtually controlling muscle differentiation. CDR1as is highly expressed in muscles of the mid-embryonic goat foetus, and activated at the initiation of myogenic differentiation in vitro. MyoD (myogenic differentiation protein 1), a driven transcription factor for myogenesis, promotes CDR1as by binding on its 5' flank region (- 646 to -634 bp, neighbouring the predicted transcription start site at - 580 bp). Overexpression or knockdown of CDR1as dramatically induces or impedes muscle differentiation program, respectively. By competitively binding to miR-7 (microRNA 7), CDR1as relieves the downregulation of IGF1R (insulin like growth factor 1 receptor) caused by miR-7 and consequently activates muscle differentiation. These results unveil that CDR1as plays critical roles in myogenic differentiation, which extends the versatile functions of CDR1as in mammal development and disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据