4.8 Article

Highly Efficient and Recyclable Carbon-Nanofiber-Based Aerogels for Ionic Liquid-Water Separation and Ionic Liquid Dehydration in Flow-Through Conditions

期刊

ADVANCED MATERIALS
卷 31, 期 39, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201903418

关键词

dehydration of ILs; filtration; ice-segregation-induced self-assembly (ISISA); IL-water separation; superhydrophobic aerogels

资金

  1. MINECO/FEDER [MAT2015-68639-R, RTI2018-097728-B-I00]
  2. China Scholarship Council [201608330266]

向作者/读者索取更多资源

Ionic liquids (ILs) are being widely used in many diverse areas of social interest, including catalysis, electrochemistry, etc. However, issues related to hygroscopicity of many ILs and the toxic and/or nonbiodegradable features of some of them limit their practical use. Developing materials capable of IL recovery from aqueous media and dehydration, thus allowing their recycling and subsequent reutilization, in a single and efficient process still poses a major challenge. Herein, electrically conductive aerogels composed of carbon nanofibers (CNFs) with remarkable superhydrophobic features are prepared. CNF-based 3D aerogels are prepared through a cryogenic process, so called ice-segregation-induced self-assembly (ISISA) consisting of the unidirectional immersion of an aqueous chitosan (CHI) solution also containing CNFs in suspension into a liquid nitrogen bath, and subsequent freeze-drying. The CNF-based 3D aerogels prove effective for absorption of ILs from aqueous biphasic systems and recovery with quite low water contents just through a single process of filtration. Moreover, the electrical conductivity of CNF-based 3D aerogels is particularly interesting to treat highly viscous ILs because the Joule effect allows not only shortening of the absorption process but also enhancement of the flux rate when operating in flow-through conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据