4.6 Article

Feeding Essential Oils to Neonatal Holstein Dairy Calves Results in Increased Ruminal Prevotellaceae Abundance and Propionate Concentrations

期刊

MICROORGANISMS
卷 7, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms7050120

关键词

rumen; microbiome; bacteria; essential oils; propionate; Prevotella

资金

  1. South Dakota State University Agricultural Experiment Station [SD00H392-11]
  2. USDA National Institute of Food and Agriculture [SD00H551-15]

向作者/读者索取更多资源

Since antibiotic use in animal production has become a public health concern, great efforts are being dedicated to find effective and viable alternatives. While essential oils (EO) have become attractive candidates for use in the livestock industry, their mode of action and microbial targets in food animals remain largely uncharacterized. To gain further insight, we investigated the rumen environment of neonatal calves fed calf starter pellets and milk replacer supplemented with a commercial blend of EO. Propionate concentrations were not only found to be higher in EO-fed calves compared to controls (P < 0.05), but ruminal bacterial communities also differed greatly. For instance, the abundance of Firmicutes was significantly lower in samples from EO-fed calves than in controls, which appeared to be mostly due to lower Lachnospiraceae levels (P < 0.05). In contrast, Bacteriodetes were more abundant in EO-fed calves compared to controls, which was primarily the result of higher Prevotellaceae (P < 0.05). Notably, two bacterial operational taxonomic units (OTUs) were significantly more abundant in EO-fed calves; SD_Bt-00966 was found to be a close relative of Prevotella ruminicola (97%), while SD_Bt-00978 likely corresponded to an uncharacterized species of Gammaproteobacteria. In addition, Pearson correlation and canonical correspondence analyses revealed potential associations between other ruminal bacterial OTUs and either short chain fatty acids (SCFA) parameters or metrics for calf growth. Together, these results support that EO supplementation in growing dairy calves can modulate rumen function through SCFA production and growth of specific rumen bacterial groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据