4.6 Review

A Survey on Deep Learning in Image Polarity Detection: Balancing Generalization Performances and Computational Costs

期刊

ELECTRONICS
卷 8, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/electronics8070783

关键词

convolutional neural networks; deep learning; transfer learning; image polarity detection; computing resources

向作者/读者索取更多资源

Deep convolutional neural networks (CNNs) provide an effective tool to extract complex information from images. In the area of image polarity detection, CNNs are customarily utilized in combination with transfer learning techniques to tackle a major problem: the unavailability of large sets of labeled data. Thus, polarity predictors in general exploit a pre-trained CNN as the feature extractor that in turn feeds a classification unit. While the latter unit is trained from scratch, the pre-trained CNN is subject to fine-tuning. As a result, the specific CNN architecture employed as the feature extractor strongly affects the overall performance of the model. This paper analyses state-of-the-art literature on image polarity detection and identifies the most reliable CNN architectures. Moreover, the paper provides an experimental protocol that should allow assessing the role played by the baseline architecture in the polarity detection task. Performance is evaluated in terms of both generalization abilities and computational complexity. The latter attribute becomes critical as polarity predictors, in the era of social networks, might need to be updated within hours or even minutes. In this regard, the paper gives practical hints on the advantages and disadvantages of the examined architectures both in terms of generalization and computational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据