4.5 Article

Optimization of Silicone 3D Printing with Hierarchical Machine Learning

期刊

3D PRINTING AND ADDITIVE MANUFACTURING
卷 6, 期 4, 页码 181-189

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/3dp.2018.0088

关键词

additive manufacturing; machine learning; design tool; optimization; polymer; 3D printing

资金

  1. National Science Foundation [CBET-1510600]
  2. Disruptive Health Technology Institute at Carnegie Mellon University

向作者/读者索取更多资源

Additive manufacturing of soft materials requires optimization of printable inks, formulations of these feedstocks, and complex printing processes thatmust balance a large number of disparate but highly correlated variables. Here, hierarchical machine learning (HML) is applied to 3D printing of silicone elastomer via freeform reversible embedding (FRE), which is challenging because it involves depositing aNewtonian prepolymer liquid phase within a Bingham plastic support bath. The advantage of the HML algorithm is that it can predict the behavior of complex physical systems using sparse data sets through integration of physical modeling in a framework of statistical learning. Here, it is shown that this algorithm can be used to simultaneously optimize material, formulation, and processing variables. The FRE method for 3D printing silicone parts was optimized based on a training set with 38 trial runs. Compared with the previous results from iterative optimization approaches using design-of-experiment and steepest-ascent methods, HML increased printing speed by up to 2.5 x while retaining print fidelity and also identified a unique silicone formulation and printing parameters that had not been found previously through trialand- error approaches. These results indicate that HML is an effective tool with the potential for broad application for planning and optimizing in additive manufacturing of soft materials via the FRE method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据