4.8 Article

The Intra-nuclear SphK2-S1P Axis Facilitates M1-to-M2 Shift of Microglia via Suppressing HDAC1-Mediated KLF4 Deacetylation

期刊

FRONTIERS IN IMMUNOLOGY
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2019.01241

关键词

microglial polarization; Sphk2; S1P; KLF4; ischemia

资金

  1. National Natural Science Foundation of China [81773701, 81473197]
  2. Jiangsu Key Research and Development Program [BE2017737]
  3. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [18KJA310004]
  4. 333 High-level Talents Project of Jiangsu Province [BRA2017469]
  5. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX17_1271, KYCX18_1466]
  6. Major Project of Nanjing Medical University [NMUD2018008]

向作者/读者索取更多资源

Sphingosine 1-phosphate (S1P) is involved in a variety of cellular responses including microglial activation and polarization. However, the impacts of S1P on ischemia-induced microglial activation and polarization remain unclear. In the present study, Sprague-Dawley rats were selected for middle cerebral artery occlusion (MCAO) establishment and treated with S1P analog FTY720 (0.5, 1, 2 mg/kg) for 24 h. The impacts of FTY720 on oxygen-glucose deprivation (OGD)-induced microglial polarization were examined in the primary cultured microglia. FTY720 treatment could prevent ischemia-induced brain injury and neurological dysfunction, also decrease the levels of IL-113 and TNF-u and promote M2 microglial polarization in rats. Further, we found that FTY720 inhibited the expressions of M1 markers, but increased the expressions of M2 markers in the OGD-insulted microglia. And FTY720 could enhance the phagocytic function of microglia. The sphingosine kinase 1/2 (SphK1/2) or the Sphk2 inhibitor could prevent the M1 to M2 phenotype shift improved by FTY720, but the Sphk1 inhibitor failed to affect the roles of FTY720. Furthermore, the Sphk1/2 or Sphk2 inhibitor promoted the activities of histone deacetylase (HDAC1) and inhibited the histone acetylation of the Kruppel-like factor 4 (KLF4) promoter regions, indicating that intra-nuclear pFTY720 inhibited HDAC1 activations and prevented KLF4 to interact with HDAC1, and thereby suppresses KLF4 deacetylation. Therefore, our data reveals that intra-nuclear SphK2-S1P axis might facilitate the transformation of microglial polarization from M1 to M2 phenotype, which might be intra-nuclear regulatory mechanisms of FTY720-prevented neuroinflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据