4.5 Article

Accurate Metasurface Synthesis Incorporating Near-Field Coupling Effects

期刊

PHYSICAL REVIEW APPLIED
卷 11, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.11.064007

关键词

-

资金

  1. Australian Research Council [LP160100253]
  2. Luxembourg Ministry of the Economy [CVN 18/17/RED]
  3. Australian Research Council [LP160100253] Funding Source: Australian Research Council

向作者/读者索取更多资源

One of the most promising metasurface architectures for the microwave and terahertz frequency ranges consists of three patterned metallic layers separated by dielectrics. Such metasurfaces are well suited to planar fabrication techniques and their synthesis is facilitated by modeling them as impedance sheets separated by transmission lines. We show that this model can be significantly inaccurate in some cases, due to near-field coupling between metallic layers. This problem is particularly severe for higher frequency designs, where fabrication tolerances prevent the patterns from being highly sub wavelength in size. Since the near-field coupling is difficult to describe analytically, correcting for it in a design typically requires numerical optimization. We propose an extension of the widely used equivalent-circuit model to incorporate near-field coupling and show that the extended model can predict the scattering parameters of a metasurface accurately. Based on our extended model, we introduce an improved metasurface synthesis algorithm that gives physical insight to the problem and efficiently compensates for the perturbations induced by near-field coupling. Using the proposed algorithm, a Huygens metasurface for beam refraction is synthesized showing a performance close to the theoretical efficiency limit despite the presence of strong near-field coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据