4.7 Article

A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy

期刊

JOURNAL OF NANOBIOTECHNOLOGY
卷 17, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12951-019-0513-z

关键词

Photothermal effect; Biomimetic delivery system (BDS); Macrophage; Cancer therapy

资金

  1. National Natural Science Foundation of China [81802480, 81672516, 81703051, 81803078]
  2. China Naval Logistics Department [16JS005]
  3. Changhai hospital key technology of clinical pharmacy [CH125520400]
  4. Shanghai Municipal Commission of Health and Family planning-Construction of clinical pharmacy service system [2016ZB0303]

向作者/读者索取更多资源

BackgroundMacrophages with tumor-tropic migratory properties can serve as a cellular carrier to enhance the efficacy of anti neoplastic agents. However, limited drug loading (DL) and insufficient drug release at the tumor site remain the main obstacles in developing macrophage-based delivery systems. In this study, we constructed a biomimetic delivery system (BDS) by loading doxorubicin (DOX)-loaded reduced graphene oxide (rGO) into a mouse macrophage-like cell line (RAW264.7), hoping that the newly constructed BDS could perfectly combine the tumor-tropic ability of macrophages and the photothermal property of rGO.ResultsAt the same DOX concentration, the macrophages could absorb more DOX/PEG-BPEI-rGO than free DOX. The tumor-tropic capacity of RAW264.7 cells towards RM-1 mouse prostate cancer cells did not undergo significant change after drug loading in vitro and in vivo. PEG-BPEI-rGO encapsulated in the macrophages could effectively convert the absorbed near-infrared light into heat energy, causing rapid release of DOX. The BDS showed excellent anti-tumor efficacy in vivo.ConclusionsThe BDS that we developed in this study had the following characteristic features: active targeting of tumor cells, stimuli-release triggered by near-infrared laser (NIR), and effective combination of chemotherapy and photothermotherapy. Using the photothermal effect produced by PEG-BPEI-rGO and DOX released from the macrophages upon NIR irradiation, MAs-DOX/PEG-BPEI-rGO exhibited a significant inhibitory effect on tumor growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据