4.5 Article

Bilobalide protects H9c2 cell from oxygen-glucose-deprivation-caused damage through upregulation of miR-27a

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/21691401.2019.1640708

关键词

Myocardial ischemia; bilobalide; miR-27a; PI3K/AKT; Wnt/beta-catenin

向作者/读者索取更多资源

Background: Myocardial ischemia is a troublesome disease. Bilobalide possesses multiple biological functions. We researched the consequents of bilobalide in OGD-irritated H9c2 cells. Methods: OGD-stimulated H9c2 cells were treated by bilobalide, and/or transfected with miR-27a inhibitor or negative control. Use CCK-8 and flow cytometry to test cell activity and apoptosis, respectively. Luciferase activity experiment was to test targeting link between miR-27a and Tmub1. Levels of cell-cycle and apoptosis relative proteins and phosphorylation of PI3K/AKT and Wnt/beta-catenin related proteins were detected through western blot. Results: OGD stimulation reduced cell activity and negatively regulated the expression of CDK4, CDK6 and CyclinD1. Cell apoptosis was increased and its related proteins were affected by OGD. Bilobalide administration reversed all the results above caused by OGD. OGD negatively regulated miR-27a while bilobalide upregulated miR-27a. miR-27a's target gene was Tmub1. The protection consequents of bilobalide were suppressed when cells were transfected with a miR-27a inhibitor that cell activity was reduced and apoptosis was raised. Attenuation in the phosphorylation level of PI3K, AKT and beta-catenin by OGD was reversed by bilobalide, whereas there were opposite results after transfected with miR-27a inhibitor. Conclusion: Bilobalide relieved OGD-caused H9c2 cell damage, raising cell activity and attenuating apoptosis via upregulating miR-27a and activating of PI3K/AKT and Wnt/beta-catenin signal pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据