4.6 Article

Micromixing Efficiency of Particles in Heavy Metal Removal Processes under Various Inlet Conditions

期刊

WATER
卷 11, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/w11061135

关键词

particles; water purification; heavy metals; computational fluid dynamics; discrete element method

向作者/读者索取更多资源

Water quality problems are a persistent global issue since population growth has continually stressed hydrological resources. Heavy metals released into the environment from plating plants, mining, and alloy manufacturing pose a significant threat to the public health. A possible solution for water purification from heavy metals is to capture them by using nanoparticles in micromixers. In this method, conventionally heavy metal capture is achieved by effectively mixing two streams, a particle solution and the contaminated water, under the action of external magnetic fields. In the present study, we investigated the effective mixing of iron oxide nanoparticles and water without the use of external magnetic fields. For this reason, the mixing of particles and the contaminated water was studied for various inlet velocity ratios and inflow angles of the two streams using computational fluid dynamics techniques. The Navier-Stokes equations were solved for the water flow, the discrete motion of particles was evaluated by a Lagrangian method, while the flow of substances of the contaminated water was studied by a scalar transport equation. Results showed that as the velocity ratio between the inlet streams increased, the mixing of particles with the contaminated water was increased. Therefore, nanoparticles were more uniformly distributed in the duct and efficiently absorbed the substances of the contaminated water. On the other hand, the angle between two streams was found to play an insignificant role in the mixing process. Consequently, the results from this study could be used in the design of more compact and cost efficient micromixer devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据