4.6 Article

TiO2 and Au-TiO2 Nanomaterials for Rapid Photocatalytic Degradation of Antibiotic Residues in Aquaculture Wastewater

期刊

MATERIALS
卷 12, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/ma12152434

关键词

TiO2 nanomaterials; Au nanoparticles; anodization; photocatalytic degradation of antibiotics; LC-MS; MS

资金

  1. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [103.99-2016.75]

向作者/读者索取更多资源

Antibiotic residues in aquaculture wastewater are considered as an emerging environmental problem, as they are not efficiently removed in wastewater treatment plants. To address this issue, we fabricated TiO2 nanotube arrays (TNAs), TiO2 nanowires on nanotube arrays (TNWs/TNAs), Au nanoparticle (NP)-decorated-TNAs, and TNWs/TNAs, which were applied for assessing the photocatalytic degradation of eight antibiotics, simultaneously. The TNAs and TNWs/TNAs were synthesized by anodization using an aqueous NH4F/ethylene glycol solution. Au NPs were synthesized by chemical reduction method, and used to decorate on TNAs and TNWs/TNAs. All the TiO2 nanostructures exhibited anatase phase and well-defined morphology. The photocatalytic performance of TNAs, TNWs/TNAs, Au-TNAs and Au-TNWs/TNAs was studied by monitoring the degradation of amoxicillin, ampicillin, doxycycline, oxytetracycline, lincomycin, vancomycin, sulfamethazine, and sulfamethoxazole under ultraviolet (UV)-visible (VIS), or VIS illumination by LC-MS/MS method. All the four kinds of nanomaterials degraded the antibiotics effectively and rapidly, in which most antibiotics were removed completely after 20 min treatment. The Au-TNWs/TNAs exhibited the highest photocatalytic activity in degradation of the eight antibiotics. For example, reaction rate constants of Au-TNWs/TNAs for degradation of lincomycin reached 0.26 min(-1) and 0.096 min(-1) under UV-VIS and VIS irradiation, respectively; and they were even higher for the other antibiotics. The excellent photocatalytic activity of Au-TNWs/TNAs was attributed to the synergistic effects of: (1) The larger surface area of TNWs/TNAs as compared to TNAs, and (2) surface plasmonic effect in Au NPs to enhance the visible light harvesting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据