4.6 Article

Vision-Based Measurement of Heart Rate from Ballistocardiographic Head Movements Using Unsupervised Clustering

期刊

SENSORS
卷 19, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/s19153263

关键词

heart rate measurement; head movement; ballistocardiography; remote BCG; remote PPG; unsupervised clustering; k-means; camera

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2018R1A2B6008901]

向作者/读者索取更多资源

Heart rate has been measured comfortably using a camera without the skin-contact by the development of vision-based measurement. Despite the potential of the vision-based measurement, it has still presented limited ability due to the noise of illumination variance and motion artifacts. Remote ballistocardiography (BCG) was used to estimate heart rate from the ballistocardiographic head movements generated by the flow of blood through the carotid arteries. It was robust to illumination variance but still limited in the motion artifacts such as facial expressions and voluntary head motions. Recent studies on remote BCG focus on the improvement of signal extraction by minimizing the motion artifacts. They simply estimated the heart rate from the cardiac signal using peak detection and fast fourier transform (FFT). However, the heart rate estimation based on peak detection and FFT depend on the robust signal estimation. Thus, if the cardiac signal is contaminated with some noise, the heart rate cannot be estimated accurately. This study aimed to develop a novel method to improve heart rate estimation from ballistocardiographic head movements using the unsupervised clustering. First, the ballistocardiographic head movements were measured from facial video by detecting facial points using the good-feature-to-track (GFTT) algorithm and by tracking using the Kanade-Lucas-Tomasi (KLT) tracker. Second, the cardiac signal was extracted from the ballistocardiographic head movements by bandpass filter and principal component analysis (PCA). The relative power density (RPD) was extracted from its power spectrum between 0.75 Hz and 2.5 Hz. Third, the unsupervised clustering was performed to construct a model to estimate the heart rate from the RPD using the dataset consisting of the RPD and the heart rate measured from electrocardiogram (ECG). Finally, the heart rate was estimated from the RPD using the model. The proposed method was verified by comparing it with previous methods using the peak detection and the FFT. As a result, the proposed method estimated a more accurate heart rate than previous methods in three experiments by levels of the motion artifacts consisting of facial expressions and voluntary head motions. The four main contributions are as follows: (1) the unsupervised clustering improved the heart rate estimation by overcoming the motion artifacts (i.e., facial expressions and voluntary headmotions); (2) the proposed method was verified by comparing with the previous methods using the peak detection and the FFT; (3) the proposed method can be combined with existing vision-based measurement and can improve their performance; (4) the proposed method was tested by three experiments considering the realistic environment including the motion artifacts, thus, it increases the possibility of the non-contact measurement in daily life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据