4.8 Article

Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid

期刊

PLANT JOURNAL
卷 100, 期 1, 页码 38-54

出版社

WILEY
DOI: 10.1111/tpj.14422

关键词

abscisic acid; Arabidopsis thaliana; Lotus japonicus; nitric oxide; phytoglobins

资金

  1. Ministerio de Economia y Competitividad (MINECO)
  2. MINECO-Fondo Europeo de Desarrollo Regional [AGL2014-53717-R, AGL2017-85775-R]

向作者/读者索取更多资源

Symbiotic hemoglobins provide O-2 to N-2-fixing bacteria within legume nodules, but the functions of non-symbiotic hemoglobins or phytoglobins (Glbs) are much less defined. Immunolabeling combined with confocal microscopy of the Glbs tagged at the C-terminus with green fluorescent protein was used to determine their subcellular localizations in Arabidopsis and Lotus japonicus. Recombinant proteins were used to examine nitric oxide (NO) scavenging in vitro and transgenic plants to show S-nitrosylation and other in vivo interactions with NO and abscisic acid (ABA) responses. We found that Glbs occur in the nuclei, chloroplasts and amyloplasts of both model plants, and also in the cytoplasm of Arabidopsis cells. The proteins show similar NO dioxygenase activities in vitro, are nitrosylated in Cys residues in vivo, and scavenge NO in the stomatal cells. The Cys/Ser mutation does not affect NO dioxygenase activity, and S-nitrosylation does not significantly consume NO. We demonstrate an interaction between Glbs and ABA on several grounds: Glb1 and Glb2 scavenge NO produced in stomatal guard cells following ABA supply; plants overexpressing Glb1 show higher constitutive expression of the ABA responsive genes Responsive to ABA (RAB18), Responsive to Dehydration (RD29A) and Highly ABA-Induced 2 (HAI2), and are more tolerant to dehydration; and ABA strongly upregulates class 1 Glbs. We conclude that Glbs modulate NO and interact with ABA in crucial physiological processes such as the plant's response to dessication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据