4.6 Article

Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity

期刊

OPTICS EXPRESS
卷 27, 期 16, 页码 23095-23102

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.27.023095

关键词

-

类别

资金

  1. National Natural Science Foundation of China (NSFC) [61322505, 61635005]
  2. Huo Yingdong Education Foundation [151062]
  3. Natural Science Foundation of Hunan Province [2018JJ03588]

向作者/读者索取更多资源

Phosphosilicate fiber has the inherent advantage of generating dual-wavelength output owing to the two Raman gain peaks at the frequency shifts of similar to 13.2 THz (silica-related) and 39.9 THz (phosphorus-related), respectively. The frequency shift of 39.9 THz is often adopted to obtain long wavelength laser, while the control of Stokes light at 13.2 THz has attracted much attention currently. In this paper, a dual-wavelength random distributed feedback Raman fiber laser (RDFL) with over 100 nm wavelength interval and continuously tunable power proportion was presented based on phosphosilicate fiber for the first time. Through using the filtered amplified spontaneous emission (ASE) source as the pump source, the spectral purity of the Stokes light could be as high as 99.8%. By tuning two manual variable optical attenuators (VOAs), the power proportion of the silica-related Stokes light could range from similar to 0% to 99.0%, and the maximum value is limited by the generation of second order Stokes light. Although the power handling capability of the VOA is merely 2 W, over 23 W total output power of the Stokes light was obtained thanks to the particular power distribution property of RDFL. This experiment demonstrates the potential to achieve a flexible high-power and high-spectral purity dual-wavelength RDFL output. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据