4.8 Article

A map of the inorganic ternary metal nitrides

期刊

NATURE MATERIALS
卷 18, 期 7, 页码 732-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41563-019-0396-2

关键词

-

资金

  1. US Department of Energy, Office of Science, Basic Energy Sciences, under the Department of Energy Energy Frontier Research Center for Next Generation of Materials Design: Incorporating Metastability [UGA-0-41029-16/ER392000]
  2. US Department of Energy Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]
  3. Department of Energy's Office of Energy Efficiency and Renewable Energy at NREL
  4. Research Corporation for Science Advancement through the Scialog: Advanced Energy Storage award programme
  5. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]

向作者/读者索取更多资源

Exploratory synthesis in new chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stringent synthesis constraints have limited the exploration of this important class of functional materials. Here, we employ a suite of computational materials discovery and informatics tools to construct a large stability map of the inorganic ternary metal nitrides. Our map clusters the ternary nitrides into chemical families with distinct stability and metastability, and highlights hundreds of promising new ternary nitride spaces for experimental investigation-from which we experimentally realized seven new Zn- and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity and covalency of solid-state bonding from the density functional theory (DFT)-computed electron density, we reveal the complex interplay between chemistry, composition and electronic structure in governing large-scale stability trends in ternary nitride materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据