4.6 Article

Remote Monitoring of Treatment Response in Parkinson's Disease: The Habit of Typing on a Computer

期刊

MOVEMENT DISORDERS
卷 34, 期 10, 页码 1488-1495

出版社

WILEY
DOI: 10.1002/mds.27772

关键词

drug monitoring; machine learning; neural network; Parkinson's disease; technology

向作者/读者索取更多资源

Objective The recent advances in technology are opening a new opportunity to remotely evaluate motor features in people with Parkinson's disease (PD). We hypothesized that typing on an electronic device, a habitual behavior facilitated by the nigrostriatal dopaminergic pathway, could allow for objectively and nonobtrusively monitoring parkinsonian features and response to medication in an at-home setting. Methods We enrolled 31 participants recently diagnosed with PD who were due to start dopaminergic treatment and 30 age-matched controls. We remotely monitored their typing pattern during a 6-month (24 weeks) follow-up period before and while dopaminergic medications were being titrated. The typing data were used to develop a novel algorithm based on recursive neural networks and detect participants' responses to medication. The latter were defined by the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) minimal clinically important difference. Furthermore, we tested the accuracy of the algorithm to predict the final response to medication as early as 21 weeks prior to the final 6-month clinical outcome. Results The score on the novel algorithm based on recursive neural networks had an overall moderate kappa agreement and fair area under the receiver operating characteristic (ROC) curve with the time-coincident UPDRS-III minimal clinically important difference. The participants classified as responders at the final visit (based on the UPDRS-III minimal clinically important difference) had higher scores on the novel algorithm based on recursive neural networks when compared with the participants with stable UPDRS-III, from the third week of the study onward. Conclusions This preliminary study suggests that remotely gathered unsupervised typing data allows for the accurate detection and prediction of drug response in PD. (c) 2019 International Parkinson and Movement Disorder Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据