4.7 Article

The Gravitational waves merger time distribution of binary neutron star systems

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz1589

关键词

gravitational waves; stars: evolution; stars: neutron; Galaxy: abundances

资金

  1. European Research Council advanced grant TReX
  2. Council for higher education - Israel science foundation center for excellence in Astrophysics

向作者/读者索取更多资源

Binary neutron stars (BNSs) mergers are prime sites for r-process nucleosynthesis. Their rate determines the chemical evolution of heavy elements in the Milky Way. The merger rate of BNS is a convolution of their birth rate and the gravitational radiation spiral-in delay time. Using the observed population of Galactic BNS we show here that the lifetimes of pulsars in observed BNSs are sufficiently short that the ages of BNSs have little to no effect on the observed merger time distribution. We find that at late times (t greater than or similar to 1Gyr) the gravitational wave delay time distribution (DTD) follows the expected t(-1). However, a significant excess of rapidly merging systems (between of the entire population) is apparent at shorter times. Although the exact shape of the DTD cannot be determined with the existing data, in all models that adequately describe the data we find at least of BNSs with merger times less than 1Gyr. This population of garapid mergers implies a declining deposition rate of r-process materials that is consistent with several independent observations of heavy element abundances in the Milky Way. At the same time this population that requires initial binary separations of roughly one solar radius clearly indicates that these binaries had common envelope progenitors. Our results suggest that a significant fraction of future LIGO/Virgo BNS mergers would reside in star-forming galaxies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据