4.8 Article

Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 10, 期 13, 页码 3756-3762

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b01282

关键词

-

资金

  1. Singapore National Science Scholarship
  2. Tata GridEdge Program at the Massachusetts Institute of Technology
  3. Office of Science of the DOE [DE-AC02-05CH11231]
  4. Extreme Science and Engineering Discovery Environment (XSEDE) - National Science Foundation [ACI-1053575]

向作者/读者索取更多资源

Optoelectronic devices made from colloidal quantum dots (CQDs) often take advantage of the combination of tunable quantum-confined optical properties and carrier mobilities of strongly coupled systems. In this work, first-principles calculations are applied to investigate the electronic, optical, and transport properties of PbS CQD superlattices. Our results show that even in the regime of strong necking and fusing between PbS CQDs, quantum confinement can be generally preserved. In particular, computed carrier mobilities for simple cubic and two-dimensional square lattices fused along the {100} facets are 2-3 orders of magnitude larger than those of superlattices fused along {110} and {111} facets. The relative magnitude of the electron and hole mobilities strongly depends on the crystal and electronic structures. Our results illustrate the importance of understanding the crystal structure of CQD films and that strongly fused CQD superlattices offer a promising pathway for achieving tunable quantum-confined optical properties while increasing carrier mobilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据