4.7 Article

Velocity and spatial distribution of inertial particles in a turbulent channel flow

期刊

JOURNAL OF FLUID MECHANICS
卷 872, 期 -, 页码 367-406

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.355

关键词

particle/fluid flows

资金

  1. US Army Research Office (Division of Fluid Dynamics) [W911NF-17-1-0366, W911NF-18-1-0354]
  2. Environment and Natural Resources Trust Fund of Minnesota

向作者/读者索取更多资源

We present experimental observations of the velocity and spatial distribution of inertial particles dispersed in turbulent downward flow through a vertical channel at friction Reynolds numbers Re-tau = 235 and 335. The working fluid is air laden with size-selected glass microspheres, having Stokes numbers St = 0(10) and 0(100) when based on the Kolmogorov and viscous time scales, respectively. Cases at solid volume fractions 0 = 3 x 10(-6) and 5 x 10(-5) are considered. In the more dilute regime, the particle concentration profile shows near-wall and centreline maxima compatible with a turbophoretic drift down the gradient of turbulence intensity; the particles travel at speed similar to that of the unladen flow except in the near-wall region; and their velocity fluctuations generally follow the unladen flow level over the channel core, exceeding it in the near-wall region. The denser regime presents substantial differences in all measured statistics: the near-wall concentration peak is much more pronounced, while the centreline maximum is absent; the mean particle velocity decreases over the logarithmic and buffer layers; and particle velocity fluctuations and deposition velocities are enhanced. An analysis of the spatial distributions of particle positions and velocities reveals different behaviours in the core and near-wall regions. In the channel core, dense clusters form which are somewhat elongated, tend to be preferentially aligned with the vertical/streamwise direction and travel faster than the less concentrated particles. In the near-wall region, the particles arrange in highly elongated streaks associated with negative streamwise velocity fluctuations, several channel heights in length and spaced by O(100) wall units, supporting the view that these are coupled to fluid low-speed streaks typical of wall turbulence. The particle velocity fields contain a significant component of random uncorrelated motion, more prominent for higher St and in the near-wall region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据