4.7 Article

Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles' shape and surface modification

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 565, 期 -, 页码 174-186

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2019.04.079

关键词

Gold nanorods; Poloxamer 407; Hydrogel; Wound healing; Gene expression

资金

  1. Deanship of Scientific Research and Graduate Studies, Al-Zaytoonah University of Jordan, Jordan [2017-2016/64/04]
  2. Abdul Hameed Shoman Foundation, Jordan [3/2017]

向作者/读者索取更多资源

Nanotechnology-based platforms have gained a growing interest in skin wound healing. Herein, gold nanoparticles (AuNPs) of different shapes (rods and spheres) and surface modifications (neutral, cationic and anionic charged polymers) were synthesized, characterized and loaded into a thermosensitive hydrogel (poloxamer 407). AuNPs-hydrogels exhibited excellent colloidal stability and demonstrated slow and prolonged release behavior over a 48-h of exposure using in vitro model. Hydrogels of poly ethylene glycol (PEG)-gold nanorods (AuNRs) and cationic poly allyl amine hydrochloride (PAH)-AuNRs demonstrated remarkable wound healing properties upon topical application on wounds using an animal model. PEGylated and cationic charged-AuNRs hydrogels have enhanced skin re-epithelization and collagen deposition after 14 days of daily wound treatment compared to controls, and they affected the gene expression of several inflammatory and anti-inflammatory mediators. Hydrogels of PEG-AuNRs and PAH-AuNRs exhibited potent in vitro antibacterial activity against staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Furthermore, AuNPs of different shapes and surface modifications demonstrated low percentages of deposition into the main body organs after 21 days of daily wound treatment. Hydrogels of AuNRs could be a promising nano-platform for wound healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据