4.7 Article

Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture

期刊

ENVIRONMENTAL RESEARCH
卷 174, 期 -, 页码 69-79

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2019.04.020

关键词

Dry water; Activated carbon; Partition coefficient; Gas adsorbent; Biochar; CO2 adsorption

资金

  1. Deanship of Scientific Research, King Saud University [RG-1439-043]

向作者/读者索取更多资源

Carbon dioxide is the primary greenhouse gas that has a strong impact on global warming. Several technologies have been developed for capturing CO2 to mitigate the greenhouse effect. The objective of this research was to investigate the performance of several sorbents based on dry water and porous carbon materials for capturing CO2. Seven sorbents were prepared and comparatively evaluated for their CO2 capture capabilities: (i) Conocarpus biochar (CBC); (ii) commercial activated carbon (CAC); (iii) normal dry water (NDW); (iv) K2CO3-treated CBC (TCBC); (v) K2CO3-modified dry water (MDW); (vi) MDW and 2% TCBC (MDWTCBC); and (vii) MDW and 2% activated carbon (MDWCAC). The sorption process was carried out with initial CO2 concentration of 5.7%, temperature of 25 degrees C, feed gas flow rate of 0.51 min(-1) and a pressure of 1.0 bar. The pure CO2 was mixed with O-2 or N-2 to achieve the desired inlet concentration of CO2. The CO2 adsorption capacity and partition coefficient (PC) of the tested sorbents were evaluated at 5% and 100% breakthrough (BT). The results showed a longer breakthrough and equilibrium adsorption times for CO2 when mixed with N-2 than with O-2. Among all sorbents, both CAC and CBC showed enhanced CO2 capture performance with equilibrium (100% BT) adsorption capacities of 239 and 197 mg g(-1), respectively (in terms of PC: 1.0 x 10(-3) and 7.9 x 10(-4) mol kg(-1) Pa-1, respectively). In contrast, the performance of TCBC and the dry water-based sorbents was far lower than CAC or CBC. The CO2 adsorption data fitted well to the non-linearized form of the pseudo-first-order kinetic model. The Fourier-transform infrared spectral patterns indicated that the reaction of CO2 molecules with the hydroxyl groups of sorbents is possible through the formation of chemisorbed CO2 species. It could be concluded that the activation process did not play a role in increasing the CO2 capture performance in order to form new active sorption sites. However, Conocarpus biochar can be used as efficient sorbent for CO2 capture with a better performance than other materials tested previously (e.g., activated carbon).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据