4.7 Article

Distinct roles of two cytoplasmic thioredoxin reductases (Trr1/2) in the redox system involving cysteine synthesis and host infection of Beauveria bassiana

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 100, 期 24, 页码 10363-10374

出版社

SPRINGER
DOI: 10.1007/s00253-016-7688-0

关键词

Entomopathogenic fungi; Thioredoxin reductases; Redox homeostasis; Antioxidant activity; Cysteine auxotrophy; Biological control potential

资金

  1. National Natural Science Foundation of China [31270537, 31572054, 31321063]

向作者/读者索取更多资源

Two thioredoxin (Trx) reductases (Trr1/2) are known to play overlapping roles in the yeast Trx-Trr redox system but are generally unexplored in filamentous fungi, which possess multiple Trx homologues. This study seeks to characterize the functions of Trr1 and Trr2 in Beauveria bassiana, a filamentous fungal insect pathogen, and to probe their Trx partners. Both Trr1 and Trr2 were evidently localized in the cytoplasm of B. bassiana, unlike the two yeast homologues that have been reported to localize in the cytoplasm and mitochondria, respectively. Most of the six trx genes were greatly upregulated at the transcriptional level in the absence of trr1 instead of trr2 in B. bassiana, in which the trr1/2 double deletion failed in many attempts. Deletion of trr1 resulted in increased Trx activity, severe cysteine auxotrophy, and drastically reduced activities of peroxidases and superoxide dismutases under normal or oxidative conditions despite little change in catalase activity. Such changes disappeared in the absence of trr2 and were completely restored by complementation of trr1/2 or overexpression of trx1/6 in the Delta trr1 mutant, but were not restored at all by overexpression of trx2/3/4/5 or trr2 in the same mutant. All of these mutants exhibited similar trends of changes in the antioxidant response, conidiation, germination, thermotolerance, UV-B resistance, and virulence. Taken together, the findings indicate that Trr1 could reduce Trx2-5 and hence dominate the intracellular redox state, profoundly affecting the potential of B. bassiana against arthropod pests. Trr2 could reduce Trx1/6 but function only in the absence of Trr1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据