4.5 Article

Rolling Force Prediction of Hot Rolling Based on GA-MELM

期刊

COMPLEXITY
卷 -, 期 -, 页码 -

出版社

WILEY-HINDAWI
DOI: 10.1155/2019/3476521

关键词

-

资金

  1. National Natural Science Foundation of China [71672032, 61773105, 61374147, 61733003]
  2. Fundamental Research Funds for Central University [N150402001, N180404012, N182608003]
  3. National Key Research and Development Program of China [2017YFB0304100]

向作者/读者索取更多资源

In the hot continuous rolling process, the main factor affecting the actual thickness of strip is the rolling force. The precision of rolling force calculation is the key to realize accurate on-line control. However, because of the complexity and nonlinearity of the rolling process, as well as many influencing factors, the theoretical analysis of the traditional rolling force prediction model often needs to be simplified and hypothesized. This leads to the incompleteness of the mathematical model and the deviation between the calculated results and the actual working conditions. In this paper, a rolling force prediction method based on genetic algorithm (GA), particle swarm optimization algorithm (PSO), and multiple hidden layer extreme learning machine (MELM) is proposed, namely, PSO-GA-MELM algorithm, which takes MELM as the basic model for rolling force prediction. In the modeling process, GA is used to determine the optimal number of hidden layers and the optimal number of hidden nodes, and PSO is used to search for the optimal input weights and biases. This method avoids the influence of human intervention on the model and saves the modeling time. This paper takes the actual production data of BaoSteel 2050 production line as experimental data, and the experimental results indicate that the algorithm can be effectively used to determine the optimal network structure of MELM. The rolling force prediction model trained by the algorithm has excellent performance in prediction accuracy, computational stability, and the number of hidden nodes and is applicable to the prediction of rolling force in hot continuous rolling process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据