4.7 Article

BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2

期刊

CLINICAL CANCER RESEARCH
卷 25, 期 21, 页码 6532-6545

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-19-0498

关键词

-

类别

资金

  1. U.S. Army Medical Research Acquisition Activity Prostate Cancer Research Program [W81XWH-18-1-0303]
  2. NCI of the NIH [R01CA177984, UO1CA184966]
  3. Prostate Cancer Biorepository Network [W81XWH-18-2-0015, W81XWH-18-2-0016, W81XWH-18-2-0017, W81XWH-18-2-0018, W81XWH-18-2-0019]
  4. Department of Veterans Affairs [K6BX004473]

向作者/读者索取更多资源

Purpose: Neuroendocrine prostate cancer (NEPC), an aggressive variant of castration-resistant prostate cancer (CRPC), often emerges after androgen receptor-targeted therapies such as enzalutamide or de novo, via trans-differentiation process of neuroendocrine differentiation. The mechanistic basis of neuroendocrine differentiation is poorly understood, contributing to lack of effective predictive biomarkers and late disease recognition. The purpose of this study was to examine the role of novel proneural Pit-Oct-Unc-domain transcription factors (TF) in NEPC and examine their potential as noninvasive predictive biomarkers. Experimental Design: Prostate cancer patient-derived xenograft models, clinical samples, and cellular neuroendocrine differentiation models were employed to determine the expression of TFs BRN1 and BRN4. BRN4 levels were modulated in prostate cancer cell lines followed by functional assays. Furthermore, extracellular vesicles (EV) were isolated from patient samples and cell culture models, characterized by nanoparticle tracking analyses, Western blotting, and real-time PCR. Results: We identify for the first time that: (i) BRN4 is amplified and overexpressed in NEPC clinical samples and that BRN4 overexpression drives neuroendocrine differentiation via its interplay with BRN2, a TF that was previously implicated in NEPC; (ii) BRN4 and BRN2 mRNA are actively released in prostate cancer EVs upon neuroendocrine differentiation induction; and (iii) enzalutamide treatment augments release of BRN4 and BRN2 in prostate cancer EVs, promoting neuroendocrine differentiation induction. Conclusions: Our study identifies a novel TF that drives NEPC and suggests that as adaptive mechanism to enzalutamide treatment, prostate cancer cells express and secrete BRN4 and BRN2 in EVs that drive oncogenic reprogramming of prostate cancer cells to NEPC. Importantly, EV-associated BRN4 and BRN2 are potential novel noninvasive biomarkers to predict neuroendocrine differentiation in CRPC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据