4.7 Article

Controlled synthesis of Mg(OH)2 thin films by chemical solution deposition and their thermal transformation to MgO thin films

期刊

CERAMICS INTERNATIONAL
卷 45, 期 8, 页码 10356-10363

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2019.02.093

关键词

Magnesium hydroxide; Magnesium oxide; Thin film; Chemical bath deposition; Annealing; Quantitative XPS

资金

  1. Mexican Consejo Nacional de Ciencia y Tecnologia
  2. Centro Mexicano de Innovacion en Energia Solar (CeMIE-Sol), from sectorial fund CONACYT-Sener-Sustentabilidad Energetica CeMIE-Sol 2013-02 [27]
  3. project CONACYT Problemas Nacionales [2015-01-1739]
  4. CONACYT [419529]

向作者/读者索取更多资源

The chemical solution deposition of Mg(OH)(2) thin films on glass substrates and their transformation to MgO by annealing in air is presented. The chemical solution deposition consists of a chemical reaction employing an aqueous solution composed of magnesium sulfate, triethanolamine, ammonium hydroxide, and ammonium chloride. The as-deposited films were annealed at different temperatures ranging from 325 to 500 degrees C to identify the Mg(OH)(2)-to-MgO transition temperature, which resulted to be around 375 degrees C. Annealing the as-deposited Mg (OH)(2) films at 500 degrees C results in homogeneous MgO thin films. The properties of the Mg(OH)(2) and MgO thin films were analyzed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, and by circular transmission line model. Results by X-ray diffraction show that the as-deposited thin films have a brucite structure (Mg(OH)(2)), that transforms into the periclase phase (MgO) after annealing at 500 degrees C. For the as-deposited Mg(OH)(2) thin film, a nanowall surface morphology is found; this morphology is maintained after the annealing to obtain MgO, which occurred with the evident formation of pores on the nanowall surface. The assessed chemical composition from X-ray photoelectron spectroscopy yields Mg0.36O0.64 (O/Mg ratio of 1.8) for the as-deposited Mg(OH)(2) film, where the expected stoichiometric composition is Mg0.33O0.67 (O/Mg ratio of 2.0); the same assessment yields Mg0.60O0.40 (O/Mg ratio of 0.7) for the annealed thin film, which indicates the obtainment of a MgO material with oxygen vacancies, given the deviation from the stoichiometric composition of Mg0.50O0.50 (O/Mg ratio of 1.0). These results confirm the deposition of Mg(OH)(2) films and the obtainment of MgO after the heat-treatment. The energy band gap of the films is found to be 4.64 and 5.10 eV for the as-deposited and the film annealed at 500 degrees C, respectively. The resistivity of both Mg(OH)(2) and MgO thin films lies around 10(8) Omega.cm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据