4.2 Article

Unraveling the Vascular Fate of Deformable Circulating Tumor Cells Via a Hierarchical Computational Model

期刊

CELLULAR AND MOLECULAR BIOENGINEERING
卷 12, 期 6, 页码 543-558

出版社

SPRINGER
DOI: 10.1007/s12195-019-00587-y

关键词

Lattice-Boltzmann method; Immersed Boundary method; Cell mechanics

资金

  1. European Research Council [616695]
  2. Italian Association for Cancer Research (AIRC) [17664]
  3. European Union [754490]
  4. European Research Council (ERC) [616695] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Introduction Distant spreading of primary lesions is modulated by the vascular dynamics of circulating tumor cells (CTCs) and their ability to establish metastatic niches. While the mechanisms regulating CTC homing in specific tissues are yet to be elucidated, it is well documented that CTCs possess different size, biological properties and deformability. Methods A computational model is presented to predict the vascular transport and adhesion of CTCs in whole blood. A Lattice-Boltzmann method, which is employed to solve the Navier-Stokes equation for the plasma flow, is coupled with an Immersed Boundary Method. Results The vascular dynamics of a CTC is assessed in large and small microcapillaries. The CTC shear modulus kctc is varied returning CTCs that are stiffer, softer and equally deformable as compared to RBCs. In large microcapillaries, soft CTCs behave similarly to RBCs and move away from the vessel walls; whereas rigid CTCs are pushed laterally by the fast moving RBCs and interact with the vessel walls. Three adhesion behaviors are observed-firm adhesion, rolling and crawling over the vessel walls-depending on the CTC stiffness. On the contrary, in small microcapillaries, rigid CTCs are pushed downstream by a compact train of RBCs and cannot establish any firm interaction with the vessel walls; whereas soft CTCs are squeezed between the vessel wall and the RBC train and rapidly establish firm adhesion. Conclusions These findings document the relevance of cell deformability in CTC vascular adhesion and provide insights on the mechanisms regulating metastasis formation in different vascular districts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据