4.7 Article

KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 114, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2019.108793

关键词

Lysine-specific histone demethylase 5C (KDM5C); Bromo-domain containing protein 4 (BRD4); Phosphatase and tensin homolog (PTEN); Cell proliferation; Castration-resistance prostate cancer (CRPC)

资金

  1. National Natural Science Foundation of China [81672526, 81671318, 81171255]
  2. Programs for Science and Technology Development of Anhui Province [1501041157]

向作者/读者索取更多资源

Prostate cancer (PCa) is one of the leading causes of cancer-related death worldwide, and it is almost incurable once it has developed into castration-resistance prostate cancer (CRPC). However, the mechanisms underlying the oncogenesis of PCa and CRPC remain elusive. Lysine-specific histone demethylase 5C (KDM5C) is an important member of lysine demethylase family and has recently been found highly expressed in multiple cancer types. In this study, we reported that KDM5C was highly expressed in PCa and CRPC specimens, and the high expression promoted CRPC cell proliferation through repressing phosphatase and tensin homolog (PTEN) gene epigenetically. Moreover, KDM5C was transcriptionally upregulated by bromodomain-containing protein 4 (BRD4), and knockdown KDM5C sensitized the therapeutic effects of CRPC cells to the bromodomain and extraterminal (BET) inhibitor. Taken together, our study uncovers that the BRD4-KDM5C-PTEN may be a new oncogenic pathway in CRPC development, and KDM5C is a critical protein and could be an ideal target for CRPC treatment in this oncogenic pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据