4.8 Article

Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 195, 期 -, 页码 1-8

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2016.05.001

关键词

Ni-Mg phyllosilicate nanotubes; Multicore-shell catalysts; Dry reforming of methane; Carbon resistance

资金

  1. National University of Singapore under FRC [WBS R-279-000-407-112]
  2. China Scholarship Council

向作者/读者索取更多资源

Dry reforming of methane (DRM) has been a popular research topic since it consumes two kinds of so-called green gas and produces syngas (mixture of CO and H-2) which is commonly used as fuel or feedstocks for chemical industry. In this report, we describe a multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica and test it for DRM. After Ni-Mg phyllosilicate nanotubes (PSNTS) were synthesized, a layer of mesoporous silica with a thickness of similar to 10 nm was coated by a modified Stober method of hydrolysis of tetraethyl orthosilicate (TEOS) in an ethanol solution mixed with ammonia and cetrimonium bromide (CTAB). After coating, the thermal stability was significantly improved. Upon reduction by H-2 at high temperature, multiple small Ni particles were observed to be supported along the nanotube as well as encapsulated by silica shell. When tested for dry reforming of methane, this multicore-shell catalyst showed a high and stable conversion during a 72 h durability run at 750 degrees C and much improved carbon resistance than uncoated sample which decomposed at such a high temperature. Due to its high thermal stability and excellent carbon resistance, it is believed that this catalyst can be used for other high temperature and high carbon coking reaction such as biomass gasification. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Applied

Preparation, characterization and catalytic application of phyllosilicate: A review

Zhoufeng Bian, Sibudjing Kawi

CATALYSIS TODAY (2020)

Article Engineering, Environmental

Coupling CO2 separation with catalytic reverse water-gas shift reaction via ceramic-carbonate dual-phase membrane reactor

Tianjia Chen, Zhigang Wang, Lina Liu, Subhasis Pati, Ming Hui Wai, Sibudjing Kawi

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Environmental

Experimental study on oxy-fuel combustion behavior of lignite char and carbon transfer mechanism with isotopic tracing method

Chenchen Geng, Yingjuan Shao, Zhoufeng Bian, Wenqi Zhong

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Chemical

Minimum fluidization velocity of particles with different size distributions at elevated pressures and temperatures

Yingjuan Shao, Zhaozhi Li, Wenqi Zhong, Zhoufeng Bian, Aibing Yu

CHEMICAL ENGINEERING SCIENCE (2020)

Article Chemistry, Physical

Cu/SiO2 derived from copper phyllosilicate for low-temperature water-gas shift reaction: Role of Cu+ sites

Zhoufeng Bian, Wenqi Zhong, Yang Yu, Bo Jiang, Sibudjing Kawi

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2020)

Article Chemistry, Physical

Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts

Plaifa Hongmanorom, Jangam Ashok, Guanghui Zhang, Zhoufeng Bian, Ming Hui Wai, Yiqing Zeng, Shibo Xi, Armando Borgna, Sibudjing Kawi

Summary: Ni and Ni-Mg phyllosilicate mesoporous SBA-15 catalysts prepared via ammonia evaporation (AE) method exhibit superior catalytic performance in CO2 methanation compared to catalysts prepared via wetness impregnation (WI) method, due to enhanced metal-support interaction and weakly basic sites provided by surface hydroxyl groups. Incorporation of Mg into phyllosilicate structure increases medium basic sites, promoting monodentate formate formation and improving CO2 methanation activity. Additionally, the turnover frequency of CO2 conversion is correlated with the concentration of basic sites, and the strong metal-support interaction and confinement effect of SBA-15 can suppress metal sintering, ensuring good stability.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Multidisciplinary

A CFD study on the performance of CO2 methanation in a water-permeable membrane reactor system

Zhewei Liu, Zhoufeng Bian, Zhigang Wang, Bo Jiang

Summary: The study focuses on the interplay of water permeation and methanation within a membrane reactor, aiming to recommend suitable membrane properties and optimal operation conditions. Results indicate the importance of matching the methanation reaction rate with the H2O permeation rate for CO2 conversion, as well as the necessity of maintaining H2 and CO2 permeation selectivity lower than 0.1 to avoid negative effects.

REACTION CHEMISTRY & ENGINEERING (2022)

Article Chemistry, Applied

Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions

Xingyuan Gao, Ping Cai, Ziyi Wang, Xiaomei Lv, Sibudjing Kawi

Summary: CO2 utilizations and conversions play a significant role in reducing greenhouse gas emissions and regenerating industrial exhausts. Metal oxides, as catalysts, have been proven effective in adsorbing and activating CO2 based on surface acidity/basicity and oxygen defects. This review comprehensively summarizes the impacts of these physicochemical properties of metal oxides on CO2 adsorption and activation, with a focus on CO2 conversion activity, product yield selectivity, and catalyst stability in reforming and hydrogenation reactions. Additionally, the review explores the structure-performance relationships, reaction/deactivation mechanisms, and origins of surface acidity/basicity and oxygen defects.

TOPICS IN CATALYSIS (2023)

Article Engineering, Environmental

Catalytic decomposition of methane for controllable production of carbon nanotubes and high purity H2 over LTA zeolite-derived Ni-based yolk-shell catalysts

Guoqiang Song, Claudia Li, Wenjun Zhou, Libo Wu, Kang Hui Lim, Feiyang Hu, Tianchang Wang, Shaomin Liu, Zhifeng Ren, Sibudjing Kawi

Summary: This study reports a structure-reconstruction strategy based on a micropore-confined process to prepare yolk-shell catalysts with highly dispersed metallic nickel. The size of the nickel particles has a significant impact on the rates of methane decomposition, penetration of dissolved carbon, and growth of carbon nanotubes (CNTs), which provides an important route for the design of functionalized CDM catalysts.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Polymer Science

Adsorption behaviors and mechanisms of porous hypercrosslinked polymers with adjustable functional groups toward doxycycline hydrochloride from water

Yingjie Guo, Zan Chen, Xue Hu, Yawei Du, Cuijia Duan, Claudia Li, Sibudjing Kawi, Yinhui Li

Summary: Imino hypercrosslinked polymers (NH-HCPs), amino hypercrosslinked polymers (NH2-HCPs), and carboxyl hypercrosslinked polymers (COOH-HCPs) were synthesized as highly efficient adsorbents for doxycycline hydrochloride (DOX) in water. The NH-HCPs exhibited the highest specific surface area and adsorption capacity, while the COOH-HCPs showed the strongest adsorption capability. Structural adjustments played a more significant role in improving adsorption performance compared to functional adjustments. The primary DOX adsorption mechanism involved hydrogen bonding and other mechanisms.

JOURNAL OF APPLIED POLYMER SCIENCE (2023)

Article Chemistry, Physical

Synergetic Interaction between Single-Atom Cu and Ga2O3 Enhances CO2 Hydrogenation to Methanol over CuGaZrOx

Xiaoyu Han, Tiantian Xiao, Maoshuai Li, Ziwen Hao, Jiyi Chen, Yutong Pan, Xiaohui Zi, Heng Zhang, Shibo Xi, Hui Ming Wai, Sibudjing Kawi, Xinbin Ma

Summary: CuGaZrOx solid solution catalysts show promise for the selective hydrogenation of CO2 to methanol. The structural complexity of the catalyst presents a challenge to understanding the nature of active sites. This study reveals that synergistic interactions between copper and gallium species enhance the capacity for CO2 adsorption/activation and promote the hydrogenation of CO2 to form methanol via a formate pathway.

ACS CATALYSIS (2023)

Review Chemistry, Physical

Catalytic CO2 Conversion to C1 Chemicals over Single-Atom Catalysts

Zhikun Zhang, Ziyan Yang, Lina Liu, Yaru Wang, Sibudjing Kawi

Summary: This review provides a comprehensive overview of the catalytic performance and mechanism of single-atom catalysts (SACs) in the thermocatalytic conversion of CO2 to C1 chemicals. SACs offer advantages in performance tuning through the regulation of coordination environment. However, there are still limitations in current studies that need to be addressed in order to drive decarbonization and greenhouse gas cycling in industries.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Inorganic & Nuclear

Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation

Yuepeng Hei, Zuojun Lu, Claudia Li, Jian Song, Bo Meng, Naitao Yang, Sibudjing Kawi, Jaka Sunarso, Xiaoyao Tan, Shaomin Liu

Summary: In this study, Ce0.8Y0.2O2-delta-BaCe0.8Y0.2O3-delta (YDC-BCY) hollow fiber (HF) membranes were developed and characterized for their hydrogen (H-2) permeation fluxes. By synthesizing YDC and BCY ceramic powders using the sol-gel method and fabricating YDC-BCY dual-phase ceramic HF membranes, it was found that the YDC/BCY molar ratio of 4:1 exhibited the highest hydrogen flux under certain conditions.

INORGANICS (2023)

Article Chemistry, Physical

Iron-oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation

Bo Jiang, Lin Li, Qian Zhang, Jing Ma, Haotian Zhang, Kewei Yu, Zhoufeng Bian, Xiaoliang Zhang, Xuehu Ma, Dawei Tang

Summary: In this study, it was demonstrated through experiments and theoretical calculations that the A-site lanthanide in perovskite-type oxygen carriers plays a crucial role in controlling the Fe-O covalency and hence the syngas yield. A smaller A-site cation radius was found to induce severe geometric tilting of the FeO6 octahedra, weakening the Fe-O orbital hybridization and reducing the oxygen mobility and surface oxygen activity. The charge-transfer energy was identified as a useful tool for designing oxygen carriers rationally and enhancing the understanding of oxygen modulation in chemical looping technologies.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

Enhancing catalytic activity of zeolitic octahedral metal oxides through zinc incorporation for ethane oxidative dehydrogenation

Bolun Yu, Denan Li, Qianqian Zhu, Shufan Yao, Lifeng Zhang, Yanshuo Li, Zhenxin Zhang

Summary: This study successfully improved the catalytic activity of a zeolitic octahedral metal oxide by incorporating a single zinc species into its micropore. The zinc incorporation achieved a high ethane conversion rate and ethylene selectivity. Mechanism study showed that the isolated zinc site played a crucial role in activating oxygen and ethane, as well as stabilizing intermediates and transition states.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Unveiling the synergistic effect between the metallic phase and bridging S species over MoS2 for highly efficient nitrogen fixation

Ruoqi Liu, Hao Fei, Jian Wang, Ting Guo, Fangyang Liu, Zhuangzhi Wu, Dezhi Wang

Summary: This work successfully synthesized a high-performing S-enriched MoS2 catalyst for electrocatalytic nitrogen reduction reaction (NRR), demonstrating high activity and selectivity. The synergistic effect of the 1T phase and bridging S22- species was shown to play a positive role in NRR performances, and DFT calculations revealed the mechanism behind the improved performance.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Polymethylhydrosiloxane-modified gas-diffusion cathode for more efficient and durable H2O2 electrosynthesis in the context of water treatment

Pan Xia, Lele Zhao, Xi Chen, Zhihong Ye, Zhihong Zheng, Qiang He, Ignasi Sires

Summary: This study presents a modified gas-diffusion electrode (GDE) for highly efficient and stable H2O2 electrosynthesis by using trace polymethylhydrosiloxane (PMHS). DFT calculations provide an in-depth understanding of the roles of PMHS functional groups.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air

Kwangchol Ri, Songsik Pak, Dunyu Sun, Qiang Zhong, Shaogui Yang, Songil Sin, Leliang Wu, Yue Sun, Hui Cao, Chunxiao Han, Chenmin Xu, Yazi Liu, Huan He, Shiyin Li, Cheng Sun

Summary: Different B-doped rGO catalysts were synthesized and their 2e- oxygen reduction reaction (ORR) performance was investigated. It was found that the 2e- ORR selectivity of B-doped rGO was influenced by the B content and oxygen mass transfer conditions. The synthesized catalyst exhibited high 2e- ORR selectivity and was capable of degrading organic pollutants continuously.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Oxygen vacancies-modified S-scheme heterojunction of Bi-doped La2Ti2O7 and La-doped Bi4Ti3O12 to improve the NO gas removal avoiding NO2 product

Li Lv, Lin Lei, Qi-Wen Chen, Cheng-Li Yin, Huiqing Fan, Jian-Ping Zhou

Summary: Monoclinic phase La2Ti2O7 and orthorhombic phase Bi4Ti3O12 are widely used in photocatalysis due to their layered crystal structure. The electronic structures of these phases play a crucial role in their photocatalytic activity. Heat treatment in a nitrogen atmosphere introduces more oxygen vacancies into the S-scheme heterojunction, leading to enhanced NO removal efficiency.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Understanding the synergistic effect of hydrated electron generation from argon plasma catalysis over Bi2O3/CeO2 for perfluorooctanoic acid dehalogenation: Mechanism and DFT study

Choe Earn Choong, Minhee Kim, Jun Sup Lim, Young June Hong, Geon Joon Lee, Keun Hwa Chae, In Wook Nah, Yeomin Yoon, Eun Ha Choi, Min Jang

Summary: In this study, the synergistic effect between argon-plasma-system (AP) and catalysts in promoting the production of reactive species for water remediation was investigated. By altering the oxygen vacancies concentration of CeO2/Bi2O3 catalyst, the production of hydrated electrons was stimulated for PFOA removal. The results showed that the built-in electric field in the Bi/Ce0.43 interface enhanced electron migration and eaq- generation, leading to improved PFOA removal efficiency.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Ru clusters anchored on N-doped porous carbon-alumina matrix as efficient catalyst toward primary amines via reductive amination

Yushan Wu, Di Xu, Yanfei Xu, Xin Tian, Mingyue Ding

Summary: Efficient synthesis of primary amines from carbonyl compounds was achieved via reductive amination using Ru@NC-Al2O3 as a catalyst, exhibiting high activity and selectivity under mild conditions.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Efficient 1O2 production from H2O2 over lattice distortion controlled spinel ferrites

Yilan Jiang, Peifang Wang, Tingyue Chen, Keyi Gao, Yiran Xiong, Yin Lu, Dionysios D. Dionysiou, Dawei Wang

Summary: By controlling the content of Co and Ni in Co1-xNixFe2O4, the production of O-1(2) from H2O2 can be regulated. NiFe2O4, with the lowest lattice distortion degree, can efficiently produce O-1(2) as the dominant reactive oxygen species. The system also exhibits significant resistance to water matrix interference.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Tailoring the Mo-N/Mo-O configuration in MoO2/Mo2N heterostructure for ampere-level current density hydrogen production

Shuai Feng, Donglian Li, Hao Dong, Song Xie, Yaping Miao, Xuming Zhang, Biao Gao, Paul K. Chu, Xiang Peng

Summary: In this study, MoO2/Mo2N heterostructures were prepared by regulating the coordination of Mo atoms. The electrocatalyst exhibits high current density and excellent stability for hydrogen evolution reaction.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Spin state-tailored tetrahedral and octahedral cobalt centers on millimetric Co-Al oxide catalysts as dual sites for synergistic peroxymonosulfate activation

Jia-Cheng E. Yang, Min -Ping Zhu, Daqin Guan, Baoling Yuan, Darren Delai Sun, Chenghua Sun, Ming-Lai Fu

Summary: This study successfully modulated the electron configuration and spin state of millimetric metal catalysts by adjusting the support curvature radius. The electronic structure-oriented spin catalysis was found to affect the degradation of pollutants, providing new insights for the design and production of highly active, reusable, and stable catalysts.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Cu nanocrystals coupled with poly (heptazine imide) for synergistically enhanced photocatalytic CH3SH elimination: Facet engineering strengthened electron pump effect

Tao Zhong, Su Tang, Wenbin Huang, Wei Liu, Huinan Zhao, Lingling Hu, Shuanghong Tian, Chun He

Summary: In this study, a highly efficient photocatalyst for the elimination of CH3SH was developed by engineering different crystal facets and coupling them with PHI. Cu (111)/PHI exhibited the highest elimination efficiency and showed good stability and reusability. The enhanced surface electron pump effect and effective adsorption mechanisms were revealed through comprehensive characterizations and DFT calculations.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

NiSn intermetallic nanoparticles with geometrically isolated Ni sites for selective C-O cleavage of furfural

Feifei Yang, Tianyu Zhang, Jiankang Zhao, Wei Zhou, Nicole J. Libretto, Jeffrey T. Miller

Summary: A Ni3Sn intermetallic nano particle was found to have geometrically isolated Ni sites that could selectively cleave C-O bonds in biomass derivatives. This nano particle showed high activity and selectivity towards 2-methylfuran, unlike Ni nanoparticles that produced other unwanted products derived from the aromatic rings.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Nickel-facilitated in-situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia

Lulu Qiao, Di Liu, Anquan Zhu, Jinxian Feng, Pengfei Zhou, Chunfa Liu, Kar Wei Ng, Hui Pan

Summary: This study reveals that surface evolution plays a crucial role in enhancing the electrocatalytic performance of transition metal oxides for electrochemical nitrate reduction reaction (e-NO3RR). Incorporating nickel into Co3O4 can promote surface reconstruction and improve the adsorption of intermediates and reduce energy barriers, leading to enhanced catalytic performance. The reconstructed cobalt-nickel hydroxides (CoyNi1_y(OH)2) on the catalyst's surface serve as the active phase.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Unraveling the discriminative mechanisms for peroxy activation via atomically dispersed Fe-N5 sites for tunable water decontamination

Xinyu Song, Yang Shi, Zelin Wu, Bingkun Huang, Xinhao Wang, Heng Zhang, Peng Zhou, Wen Liu, Zhicheng Pan, Zhaokun Xiong, Bo Lai

Summary: This study explores the discriminative activities and mechanisms for activation of O-O bond in peroxy compounds via single-atom catalysts (SACs) with higher coordination numbers (M-N5). The atomic catalyst (Fe-SAC) with Fe-N5 as the active center was constructed, effectively activating peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2O2). The study demonstrates the degradation efficiencies of acyclovir are related to the O-O bond length in different peroxy compounds, and reveals the discriminative mechanisms for activation of O-O bond in different Fenton-like systems.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Fe-Mn oxycarbide anchored on N-doped carbon for enhanced Fenton-like catalysis: Importance of high-valent metal-oxo species and singlet oxygen

Yangzhuo He, Hong Qin, Ziwei Wang, Han Wang, Yuan Zhu, Chengyun Zhou, Ying Zeng, Yicheng Li, Piao Xu, Guangming Zeng

Summary: A dual-metal-organic framework (MOF) assisted strategy was proposed to construct a magnetic Fe-Mn oxycarbide anchored on N-doped carbon for peroxymonosulfate (PMS) activation. The FeMn@NC-800 catalyst exhibited superior activity with almost 100% degradation of sulfamethazine (SMZ) in 30 minutes. The study provided insights for the rational design of high-performance heterogeneous catalysts and proposed a novel nonradical-based catalytic oxidation for environmental cleaning.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)