4.8 Article

Iron incorporation on graphene nanoflakes for the synthesis of a non-noble metal fuel cell catalyst

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 193, 期 -, 页码 9-15

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2016.04.002

关键词

Graphene; Nanomaterial; Catalyst; Oxygen reduction reaction; Nitrogen functionalization

资金

  1. Fonds de Recherche Nature et Technologie du Quebec (FRNTQ)
  2. Natural Science and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

In the present work, graphene nanoflakes (GNFs) were grown at both low and high levels of nitrogen functionalization and subsequently put through a wet-chemical method to add iron functionalities to the surface and create active catalyst centers. No mechanical treatments are used in order to minimize the formation of defects on the GNFs and evaluate if iron-nitrogen-GNF edges or surface sites can generate catalytic activity rather than the macropore structures holding these functionalities on porous carbon black. The catalysts produced under various synthesis routes were characterized and screened for their performance as an oxygen reduction reaction (ORR) catalyst. Characterization included an electrochemical study, an examination of the carbon and nitrogen content and bonding structure, in addition to Raman analysis and the calculation of the BET surface areas. It was found that samples that were both treated with iron acetate and put through pyrolysis produced the most active samples. These samples were composed of graphitic carbon and contained a large amount of pyridinic nitrogen. Additionally, when working with GNFs generated with high levels of nitrogen, no extra nitrogen source was needed during the iron incorporation step. This study further develops the GNF-based catalyst already seen to be a suitable ORR catalyst for the polymer electrolyte membrane fuel cell. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据