4.5 Article

Ultrawideband Radar Cross-Section Reduction by a Metasurface Based on Defect Lattices and Multiwave Destructive Interference

期刊

PHYSICAL REVIEW APPLIED
卷 11, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.11.044088

关键词

-

资金

  1. National Natural Science Foundation of China [61701448, 61671415, 61331002]
  2. High Quality Cultivation Project of CUC [CUC18A007-1]

向作者/读者索取更多资源

A metasurface based on defect lattices and an alternative physical mechanism, multiwave destructive interference (MWDI), is proposed for ultrawideband radar cross-section (RCS) reduction. The bandwidth of RCS reduction (sigma(R)) is greatly expanded by second destructive interference. The metasurface is composed of 16 basic defect lattices. First, the defect lattice can generate primary destructive interference with the capacity of RCS reduction and amplitude-phase manipulation, which consists of an aperiodic array of square rings with an embedded cross. Second, the interference between multiple backscattered waves produced by the defect lattices at multiple frequencies sampled in an ultrawide band is simultaneously manipulated and optimized by the principle of superposition of waves and particle swarm optimization (PSO) to obtain second destructive interference. The metasurface enables a 10-dB RCS reduction over an ultrawide frequency band ranging from 6.16 to 41.63 GHz with a ratio bandwidth (f(H)/f(L)) of 6.76:1 under normal incidence for both polarizations. The estimated, simulated, and measured results are in good agreement and prove that the proposed metasurface is of great significance for bandwidth expansion of RCS reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据