4.1 Article

Icariin-Loaded Polyvinyl Alcohol/Agar Hydrogel: Development, Characterization, and In Vivo Evaluation in a Full-Thickness Burn Model

期刊

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1534734619849982

关键词

icariin; PVA; agar hydrogel; scaffold; burn wound healing; tissue regeneration

向作者/读者索取更多资源

Tissue regeneration has become a promising strategy for repairing damaged skin tissues. Among the hydrogels for tissue regeneration applications, topical hydrogels have demonstrated great potential for use as 3D-scaffolds in the burn wound healing process. Currently, no report has been published specifically on icariin-loaded polyvinyl alcohol (PVA)/agar hydrogel on full-thickness burn wounds. In the present study, burn tissue regeneration based on biomimetic hydrogel scaffolds was used for repairing damaged extracellular matrix. Furthermore, a skin burn model was developed in rats, and the icariin-loaded PVA/agar hydrogels were implanted into the damaged portions. The regeneration of the damaged tissues with the help of the icariin-loaded hydrogel group exhibited new translucent skin tissues and repaired extracellular matrix, indicating that the hydrogel can enhance the wound healing process. Moreover, characterization studies such as X-ray diffraction, Fourier-transformed infrared spectroscopy, and differential scanning calorimetry reported the extent of compatibility between icariin and its polymers. Results of the field emission scanning electron microscopy images revealed the extent of the spread of icariin within the polymer-based hydrogel. Furthermore, the wound healing potential, confirmed by histopathological and histochemical findings at the end of 21 days, revealed the visual evidence for the biomimetic property of icariin-loaded PVA/agar hydrogel scaffolds with the extracellular matrix for tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据