4.4 Review

Experimental searches for the chiral magnetic effect in heavy-ion collisions

期刊

PROGRESS IN PARTICLE AND NUCLEAR PHYSICS
卷 107, 期 -, 页码 200-236

出版社

ELSEVIER
DOI: 10.1016/j.ppnp.2019.05.001

关键词

Heavy-ion collisions; Chiral magnetic effect; Three-point correlator; Elliptic flow background; Invariant mass; Harmonic plane

资金

  1. U.S. Department of Energy [de-sc0012910]
  2. National Natural Science Foundation of China [11847315]
  3. U.S. Department of Energy (DOE) [DE-SC0012910] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The chiral magnetic effect (CME) in quantum chromodynamics (QCD) refers to a charge separation (an electric current) of chirality imbalanced quarks generated along an external strong magnetic field. The chirality imbalance results from interactions of quarks, under the approximate chiral symmetry restoration, with metastable local domains of gluon fields of non-zero topological charges out of QCD vacuum fluctuations. Those local domains violate the P and Cp invariance, potentially offering a solution to the strong cp problem in explaining the magnitude of the matter-antimatter asymmetry in today's universe. Relativistic heavy-ion collisions, with the likely creation of the high energy density quark-gluon plasma and restoration of the approximate chiral symmetry, and the possibly long-lived strong magnetic field, provide a unique opportunity to detect the CME. Early measurements of the CME-induced charge separation in heavy-ion collisions are dominated by physics backgrounds. Major efforts have been devoted to eliminate or reduce those backgrounds. We review those efforts, with a somewhat historical perspective, and focus on the recent innovative experimental undertakings in the search for the CME in heavy-ion collisions. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据