4.8 Article

Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1821661116

关键词

hydroxyl; formaldehyde; ATom; OMI; troposphere

资金

  1. NASA ATom Earth Venture Suborbital-2 Program
  2. Atmospheric Composition Campaign Data Analysis and Modeling Grant [NNX14AP48G]
  3. NASA Upper Atmospheric Research Program
  4. NASA Tropospheric Composition Program
  5. NASA Postdoctoral Program at the NASA GSFC
  6. Atmospheric Composition Modeling and Analysis Grant [NNX17AH47G]
  7. Aura Science Team
  8. NSF Atmospheric and Geospace Sciences Postdoctoral Research Fellowship [1524860]
  9. Directorate For Geosciences
  10. Div Atmospheric & Geospace Sciences [1524860] Funding Source: National Science Foundation

向作者/读者索取更多资源

The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 +/- 0.25 x 10(6) cm(-3)), and the biseasonal average North/South Hemisphere ratio is 0.89 +/- 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据